Учебная работа. Реферат: Архимед
Архимед (≈287-212 гг. до н. э.) родился в городе Сиракузы на острове Сицилия. Его отец, Фидий, был математиком и астрономом. Видимо, он и оказал влияние на научные интересы Архимеда еще в детстве. Легенды рассказывают, что Архимед забывал о пище, подолгу не бывал в бане и готов был чертить везде: в пыли, пепле, на песке, даже на собственном теле. Однажды, в ванне, его вдруг осенила мысль о выталкивающей силе, действующей на погруженное в жидкость тело и, забыв обо всем, голый, бежал он по улицам Сиракуз с победным кличем: «Эврика!» («Я нашел!»). Архимед — автор многочисленных открытий, гениальный изобретатель, известный во всем греческом мире благодаря конструкции многих механизмов: машины для орошения полей, водоподъемного механизма, системы рычагов, блоков для поднятия больших тяжестей (кранов), военных метательных аппаратов. Он соорудил систему блоков, с помощью которой один человек смог спустить на воду огромный корабль «Сиракосия». Крылатыми стали произнесенные тогда слова Архимеда: «Дайте мне точку опоры, и я поверну землю«. Архимед погиб от меча римского легионера. Он был поглощен работой и не заметил, что город уже занят римлянами. Когда посыльный солдат явился к нему и потребовал, чтобы он немедленно явился к Марцеллу, Архимед поморщился, лениво, как от надоедливой мухи, отмахнулся от него и, не поднимая глаз от чертежа, пробурчал: «Не мешай, я вычисляю». солдат выхватил меч и убил его. На своей могильной плите Архимед завещал выгравировать шар и цилиндр — символы его геометрических открытий. Могила заросла травой и место это было забыто очень скоро. лишь через 137 лет после его смерти Цицерон разыскал в Сиракузах этот могильный камень, на котором были уже стерты временем часть знаков. А потом могила опять затерялась, уже навсегда.
ДОСТИЖЕНИЯ В МАТЕМАТИКЕ
Задача о трисекции угла.
задача о делении угла на три равные части возникла из потребностей архитектуры и строительной техники. При составлении рабочих чертежей, разного рода украшений, многогранных колоннад, при строительстве, внутренней и внешней отделки храмов, надгробных памятников древние инженеры, художники встретились с необходимостью уметь делить окружность на три равные части, а это часто вызывало затруднения. Оригинальное и вместе с тем чрезвычайно простое решение задачи о трисекции угла дал Архимед.
Измерение круга.
Задача о квадратуре круга заключается в следующем: построить квадрат, площадь которого была бы равна площади данного круга. Большой вклад в решение этой задачи внес Архимед. В своем трактате «Измерение круга» он доказывает следующие три теоремы: Спираль Архимеда. Архимедова спираль плоская трансцендентная кривая. Архимедова спираль описывается точкой M, движущейся равномерно по прямой d, которая вращается вокруг точки O, принадлежащей этой прямой. В начальный момент движения M совпадает с центром вращения O прямой. Инфинитезимальные методы. В группу инфинитезимальных методов входят: метод исчерпывания, метод интегральных сумм, дифференциальные методы. Одним из самых ранних методов является метод интегральных сумм. Он применялся при вычислении площадей фигур, объемов тел, длин кривых линий. Для вычисления объема, тело вращения разбивается на части, и каждая часть аппроксимируется (приближается) описанными и вписанными телами, объемы которых можно вычислить. теперь остается выбрать аппроксимирующие сверху и снизу тела таким образом, чтобы разность их объемов могла быть сделана сколь угодно малой. Дифференциальным методом Архимед находил касательную к спирали.
Теорема первая:
Площадь круга равна площади прямоугольного треугольника, один из катетов которого равняется длине окружности круга, а другой радиусу круга.
теорема вторая:
Площадь круга относится к площади квадрата, построенного на диаметре, приблизительно, как 11:14.
Теорема третья:
C-3d < d и C-3d > d
, где С
-длина окружности, а d
-ее диаметр. Откуда, d < C-3d < d
. Верхнюю и нижнюю границы для числа Архимед получил путем последовательного рассмотрения отношений периметров к диаметру правильных описанных и вписанных в круг многоугольников, начиная с шестиугольника и кончая 96-угольником. Если приравнять верхней границе, то получим архимедово