Учебная работа. Проектирование системы электроснабжения cтанкостроительного завода
Архангельский государственный технический университет
Кафедра электротехники и энергетических систем
КУРСОВОЙ ПРОЕКТ
По дисциплине «Электроснабжение промышленных предприятий»
На тему «Проектирование системы электроснабжения cтанкостроительного завода»
1615.10.КП.017.00ПЗ
Корельский Вадим Сергеевич
Факультет ОСП-ПЭ курс 4 группа 1 d
Руководитель проекта доцент Баланцев Г. А. т
Проект допущен к защите 1
Архангельск
2010
Федеральное агентство по образованию (Рособразование)
Архангельский государственный технический университет
Кафедра электротехники и энергетических систем
ЗАДАНИЕ НА КУРСОВОЙ ПРОЕКТ
по «Электроснабжению промышленных предприятий»
студенту ОСП-ПЭ 1 факультета 4 курса 1 группы
Корельскому Вадиму Сергеевичу
ТЕМА: «Проектирование электроснабжения станкостроительного завода»
ИСХОДНЫЕ ДАННЫЕ: Электроснабжение осуществляется от районной подстанции энергосистемы 110/10 кВ с двумя трансформаторами по 63 МВА, удаленной от завода на 10 км или от линии 35 кВ, находящейся в 8 км от завода.
Электрические нагрузки станкостроительного завода
Наименование подразделения
предприятия
n, шт.
Рном, кВт
Рном, кВт
m
1 Токарно-механический цех
190
1500
2-10
5
2 Сборочный цех
200
2405
1-50
50
3 Инструментальный цех
150
130
1-20
20
4 Литейный цех
70
2180
1-150
150
5 Кузнечный цех
50
1150
3-45
15
6 Ремонтный цех
100
1120
1-80
80
7 Насосная станция (СД, U > 1 кВ)
2
2140
1070
1
8 Компрессорная станция (СД, U > 1 кВ)
2
1100
550
1
9 Деревообделочный цех
30
400
1-20
20
10 Электрифицированный гараж
30
250
1-10
10
11 Склады готовой продукции
20
180
2-15
7,5
12 Цех (расчитываемый)
…
…
…
…
Рисунок 1- Генплан станкостроительного завода
Вариант 17. Электрические нагрузки Цеха
№ п/п
Наименование оборудования
n, шт
Pн, кВт
1
Мостовой кран
2
60
2
Металлообрабатывающие станки
7
20
3
Транспортеры
2
5
4
Лифты
1
30
5
Фрезерные станки
8
20
6
Электроинструменты
30
1,5
7
Вентиляторы
3
10
Рисунок 2- Генплан рассчитываемого цеха
Срок проектирования с «15» февраля 2010 г. по «15» декабря 2010 г.
Руководитель проекта доцент Баланцев А. Р.
Реферат
Курсовой проект состоит из 60 страниц. В пояснительной записке присутствует 8 рисунков, 12 таблиц. При написании курсового проекта использовалось 7 литературных источников. Курсовой проект так же включает в себя графическую часть.
Цель работы — практическое применение и закрепление знаний, полученных по курсу «Электроснабжение промышленных предприятий»; подготовка к выполнению дипломного проекта на завершающем этапе обучения в университете.
В ходе курсового проектирования были рассмотрены особенности технологического процесса станкостроительного завода; определены электрические нагрузки по цехам и предприятию в целом; произведен выбор внешней и внутренней схем электроснабжения завода, а также основного и вспомогательного оборудования.
Ключевые слова, встречающиеся в курсовом проекте:
Главная понизительная подстанция предприятия (ГПП) — подстанция предприятия, предназначенная для понижения напряжения получаемого из системы до напряжения внутризаводской сети предприятия.
Цеховая подстанция (ЦП) — подстанция, устанавливаемая в цехе или и предназначенная для питания этого цеха, путем понижения напряжения внутризаводской сети до напряжения потребителей цеха.
Распределительное устройство (РУ) — электроустановка, предназначенная для приема и распределения электроэнергии, содержит электрические аппараты, шины и вспомогательные устройства.
Внутризаводская сеть — система электроснабжения предприятия, передающая электроэнергию от ГПП к ЦП или РУ цехов питающимся на напряжении внутризаводской сети системы.
СОДЕРЖАНие
Введение
1. Краткая характеристика технологического процесса и требования к надёжности электроснабжения
2. Определение расчетных электрических нагрузок по методу упорядоченных диаграмм
2.1 Выбор кабельных линий
3. Выбор автоматических выключателей
4. Определение расчетных электрических нагрузок по методу коэффициента спроса
5. Выбор места расположения ГПП (ПГВ)
6. Выбор номинального напряжения и схемы внешнего электроснабжения
7. Выбор числа и мощности силовых трансформаторов ГПП
7.1 Варианты внутренней распредсети предприятия
7.2 Выбор мощности и числа цеховых трансформаторов с учетом компенсации реактивной мощности
7.3 Выбор кабельных линий 10-0,4 кВ распредсети предприятия
7.4 Выбор варианта внутреннего электроснабжения
8. Выбор числа и мощности силовых трансформаторов
8.1 Выбор компенсирующих устройств ГПП
8.2 Выбор числа и мощности силовых трансформаторов ГПП
9. Расчет токов короткого замыкания
9.1 Расчёт параметров схемы замещения
9.2 Расчет токов КЗ в сети10 кВ
9.3 Расчет токов КЗ в сети 0,4кВ
10. Проверка электрических аппаратов и проводников электрической сети по условиям КЗ
Список использованных источников
Введение
Система электроснабжения промышленного предприятия является подсистемой энергосистемы, обеспечивающей комплексное электроснабжение промышленных, транспортных, коммунальных и сельскохозяйственных потребителей данного района. Система электроснабжения промышленного предприятия является подсистемой технологической системы производства данного предприятия, которая предъявляет определенные требования к электроснабжению.
Каждое промышленное предприятие находиться в состоянии непрерывного развития: вводятся новые производственные площади, повышается использование существующего оборудования или старое оборудование заменяется новым, более производственным и мощным, изменяется технология и т. д. Система электроснабжения промышленного предприятия (от ввода до конечных приемников электроэнергии) должна быть гибкой, допускать постоянное развитие технологии, рост мощности предприятий и изменение производственных условий.
Основные задачи, решаемые при проектировании систем электроснабжения промышленных предприятий, заключаются в оптимизации параметров этих систем путем правильного выбора напряжений, определения электрических нагрузок и требований к бесперебойности электроснабжения; рационального выбора числа и мощности трансформаторов, преобразователей тока и частоты, конструкции промышленных сетей, средств компенсации реактивной мощности и регулирования напряжения, средств симметрирования нагрузок и подавление высших гармоник в сетях путем правильного построения схемы электроснабжения, соответствующей оптимальному уровню надежности и т. д. Все эти задачи непрерывно усложняются вследствие роста мощностей электроприемников, появления новых видов использования электроэнергии, новых технологических процессов и т. д.
Исходными данными на проектирование электроснабжения завода являются:
1. Генеральный план предприятия, на котором обозначены места расположения цехов, пути внутризаводского транспорта.
2. Характеристика технологического процесса производства предприятия и отдельных цехов.
3. Электрические нагрузки по цехам предприятия в виде общей установленной мощности. Для цеха, электроснабжение которого надо разработать подробно — паспортные данные отдельных приемников электроэнергии (номинальная мощность, коэффициент мощности).
4. Сведения об источниках электроснабжения промышленного предприятия:
— возможные источники питания и их мощность;
— расстояние от источников питания до промышленного предприятия;
— напряжения на сборных шинах источников питания.
задачи курсового проектирования: систематизация: расширение и закрепление теоретических знаний по специальным дисциплинам; приобретение и развитие навыков решения инженерных задач с использованием современных методов расчета, выполнения чертежей предлагаемых конструкций; овладение методикой выбора электрооборудования и схем электроснабжения с использованием директивных, инструктивных и справочных материалов, современных научных и инженерных разработок в области электроснабжения; умение оформлять техническую документацию в соответствии с требованиями ГОСТов.
1. КРАТКАЯ ХАРАКТЕРИСТИКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА И ТРЕБОВАНИЯ К НАДЁЖНОСТИ ЭЛЕКТРОСНАБЖЕНИЯ.
В качестве объекта проектирования выбран станкостроительный завод. В технологической цепочке по выпуску продукции участвуют следующие цеха и участки: токарно-механический, сборочный, инструментальный , литейный, кузнечный, ремонтный , насосная станция, компрессорная, деревообделочный цех, гараж, склад готовой продукции ,механический цех (рассчитываемый).
Все приемники электрической энергии в данных цехах потребляют трехфазный переменный ток, частотой 50 Гц, напряжением 380 В, за исключением компрессорной и насосной станций, где кроме приемников 380В имеются приемники с рабочим напряжением выше 1кВ.
По бесперебойности энергоснабжения к потребителям 2-ой категории относятся: токарно-механический, сборочный, инструментальный, литейный, деревообделочный , ремонтный, механический, рассчитываемый, кузнечный цеха, компрессорная и насосная станции.
Остальные потребители предприятия относятся к 3-ей категории: электрифицированный гараж, склад готовой продукции.
Питание завода, возможно, осуществить от подстанции 110/10 кВ с двумя трансформаторами по 63 МВ*А, расположенной в 10 км от завода, или от линии 35 кВ, находящейся в 8 км от завода.
2. Определение расчетных электрических нагрузок по методу упорядоченных диаграмм
При определении расчетных нагрузок цеха, используем метод упорядоченных диаграмм. Этот метод является основным при определение расчетных нагрузок систем электроснабжения. При выполнение расчётов распределяем электроприёмники на характерные группы и намечаем узлы питания. Расчёт проводим для всех узлов нагрузки и всего цеха в целом.
Расчетная максимальная активная нагрузка группы электроприемников определяется по формуле , кВт
Рмакс = Кмакс · Ки · Рном = Кмакс · Рсм, (1)
где Рном — суммарная номинальная активная мощность электроприемников, кВт;
Рсм — средняя мощность за наиболее загруженную смену, кВт;
Ки — групповой коэффициент использования;
Кмакс — коэффициент максимума.
Для двигателей повторно-кратковременного режима номинальная мощность приводится к длительному режиму (ПВ = 100%) и определяется по формуле , кВт
рном = рп ,(2)
где рп и ПВп — соответственно паспортная мощность и паспортная продолжительность включения.
Для сварочных трансформаторов номинальная мощность определяется по формуле , кВт
рном = Sп cosцп ,(3)
где Sп — паспортная мощность сварочного трансформатора и паспортные значения cosцп и ПВп.
Суммарная номинальная активная мощность группы электроприемников определяется по формуле
Рном = .(4)
Средняя активная и реактивная нагрузка за наиболее загруженную смену одного приемника определяется по формуле
рсм = рном · ки; (5)
qсм = рсм · tgцп,(6)
где ки — коэффициент использования электроприемников принимаем по [3, с.31, прил.1].
Для группы электроприемников
Рсм = , (7)
Qсм = .(8)
Групповой коэффициент использования определяется по формуле :
Ки = Рсм / Рном .(9)
Коэффициент максимума Кмакс определяется в зависимости от группового коэффициента использования Ки и эффективного числа электроприемников nэф [3, с.9, табл.3].
Для нахождения nэф определим показатель силовой сборки :
m = pном.макс / рнои.мин,(10)
где pном.макс — номинальная мощность наибольшего электроприемника в группе, кВт;
рнои.мин — номинальная мощность наименьшего электроприемника в группе, кВт.
При Ки > 0,2 и m > 3 эффективного числа электроприемников определяют по формуле :
nэф = 2·Рном / pном.макс.(11)
В тех случаях, когда nэф > n, то следует принимать nэф = n.
Расчетная максимальная реактивная мощность определяется по формуле :
Qмакс = К’макс · Qсм,(12)
где К’макс — коэффициент максимума реактивной нагрузки,
при nэф ? 10 К’макс = 1,1, а при nэф > 10 К’макс = 1.
Для освещения цеха принимаем лампы ДРЛ-400, соответственно для них выбираем светильники «РСП 05-400» и ПРА «1К 400ДРЛ 44-001УХЛ1»
Таблица 1- Параметры ПРА
Наименование
Мощность
Лампы, Вт
ток, А
Потери мощности (не более) , Вт
Коэффициент
мощности
Масса,кг
1К400ДРЛ44-001УХЛ1
400
2,4
25
0,85
5,5
Рисунок 3- Светильник РСП 0,5-400
Нагрузки электрического освещения учитываются по формулам [3,с.11, ф.9]
Рp.o. = po. · F · Kc.o., (13)
Qp.o. = Pp.o · tgцo(14)
где — нагрузка производственной площади, для высоты помещений 4-6 м и требуемой для таких цехов освещённости 300 лк , Вт/;
F — площадь цеха, F = 4200;
— для ламп ДРЛ , т.к. = 0,85 , то =0,62
— коэффициент спроса на осветительную нагрузку, для производственных зданий, состоящих из ряда пролётов Кс.о = 0,95 [7, с.100, табл.2.7].
Полная расчетная нагрузка цеха с освещением определяется по формуле [3,с.11, ф.10]
(15)
Потери в трансформаторе можно на этой стадии проектирования определить по формулам [3, с.13, ф.13, 14]
ДРТ = 0,02 S’p, (16)
ДQТ = 0,1 S’p.(17)
Итого по цеху полная расчетная мощность
.(18)
Расчетный ток определяется по формулам:
для одного приемника
(19)
для группы приемников
. (20)
Результаты расчетов занесем в таблицу 2.
Таблица 2- Расчетные нагрузки электроприёмников цеха
№
Узлы питания и группы электроприемников
Установленная мощность, приведенная к ПВ=1 (кВт)
Средняя нагрузка за максимально загруженную смену
Расчетная нагрузка
количество эл. приемников (рабочих/резервных)
Одного эл. приемника (наименьшего — наибольшего) Рн (кВт)
Общая рабочих/резервных Рн (кВт)
m=Pн max / Pн min
Коэффициент использования Ки
cos(fi)
tg(fi)
Рсм=Ки * Рн (кВт)
Qсм=Рсм * tg (fi св)
Эффективное число эл. приемников nэ
Коэффициент максимума Км
Рр=Км * Рсм (кВт)
Qp=Qсм * К`м (квар)
Sp (кВА)
Ip,(А).
СП-1
7
вентилятор
1
10
10
0,6
0,8
0,75
6,00
4,50
18,9
5
Фрезерный станок
2
20
40
0,2
0,65
1,17
8,00
9,35
93,5
3
Транспортёр
1
5
5
0,45
0,75
0,88
2,25
1,98
10,1
2
Металлообрабатывающий станок
2
20
40
0,2
0,65
1,17
8,00
9,35
93,5
Итого по СП-1
6
5-20
95
4,00
0,26
0,67
24,25
25,19
5
2,2
53,4
27,7
60,1
91,3
СП-2
6
Электроинструмент
30
1,50
45
0,1
0,5
1,73
4,50
7,79
30
1,6
7,3
8,6
11,3
17,1
2
Металлообрабатывающий станок
2
20
40
0,2
0,65
1,17
8,00
9,35
93,50
Таблица 2- Продолжение
5
Фрезерный станок
2
20
40
0,2
0,65
1,17
8,00
9,35
93,50
1
Мостовой кран ПВ-100%.
1
37,95
37,95
0,14
0,5
1,73
5,31
9,20
115,3
Итого по СП-2
35
1,5-37,95
163
25,3
0,16
0,57
25,81
35,70
9
2,3
59,4
39,3
71,2
108,2
СП-3
3
Транспортёр
1
5
5
0,45
0,75
0,88
2,25
1,98
10,13
7
вентилятор
1
10
10
0,6
0,8
0,75
6,00
4,50
18,99
1
Мостовой кран ПВ-100%.
1
37,95
37,95
0,2
0,5
1,73
7,59
13,15
115,3
5
Фрезерный станок
3
20
60
0,2
0,65
1,17
12
14,03
140,3
Итого по СП-3
6
5-37,95
112,95
7,59
0,25
0,62
27,84
33,66
5
2,2
61,25
37,03
71,6
171,6
СП-4
2
Металлообрабатывающий станок
3
20
60
0,2
0,55
1,52
12,00
18,22
165,8
7
Лифт
1
30
30
0,1
0,65
1,17
3,00
3,51
70,12
5
Фрезерный станок
1
20
20
0,2
0,65
1,17
4,00
4,68
46,75
7
вентилятор
1
10
10
0,6
0,8
0,75
6,00
4,50
18,99
Итого по СП-4
6
10-30
120
3,00
0,21
0,61
25,00
30,91
6
2,2
9,00
34,0
35,2
53,43
Итого по цеху
53
490,9
0,62
1,27
102,90
125,46
183
138,0
238,0
361,7
Освещение
58,1
36,0
68,4
103,9
Итого по цеху, с учетом освещения
241,
174,
306,4
465,5
Потери в трансформаторе
6,13
30,6
31,3
47,5
С учетом освещения и потерь в трансформаторе
247,2
204,7
337,6
513,0
2.1 Выбор кабельных линий
Сечение проводов и жил кабелей цеховой сети выбираем по нагреву длительным расчетным током. Принимаем марки кабелей АВВГ и ВВГ.
ток в линиях находим по формуле, А:
.(21)
где Sр — нагрузка на кабель, МВА.
Во всех случаях для проводника выбранной марки и сечения должно выполняться условие допустимого нагрева его расчетным током
.
Коэффициент загрузки линии определяется по формуле:
. (22)
Определим нестандартное сечение провода, мм2:
,(23)
где jэ — экономическая плотность тока, А/мм2, 1,4.
Результаты расчетов сведем в таблицу 3.
Таблица 3 — Выбор кабелей в цехе
участок
Ip, А
Iдоп, А
L, м
Кз
способ прокладки
марка кабеля
сечение кабеля
по нагреву
принято
ВРУ-СП-1
91,3
156,4
18,0
0,58
в канале
АВВГ
50
4х95
СП-1-7
19,0
35
5,0
0,54
в канале
ВВГ
1,5
4х4
СП-1-5(1)
46,7
75
12,0
0,62
в трубе
ВВГ
10
4х16
СП-1-5(2)
46,7
75
16,0
0,62
в трубе
ВВГ
10
4х16
СП-1-2(1)
46,7
75
37,8
0,62
в трубе
ВВГ
10
4х16
СП-1-2(2)
46,7
75
25,2
0,62
в трубе
ВВГ
10
4х16
СП-1-3
10,1
15
29,0
0,68
в трубе
ВВГ
1
4х1,5
ВРУ-СП-2
108,2
216,2
85,4
0,5
в канале
АВВГ
50
4х150
СП-2-5(1)
46,7
50
18,0
0,62
в трубе
ВВГ
10
4х16
СП-2-5(2)
46,7
50
10,7
0,62
в трубе
ВВГ
10
4х16
СП-2-1
115,3
156
10,0
0,74
в канале
АВВГ
70
4х95
СП-2-2(1)
46,7
75
22,4
0,62
в трубе
ВВГ
10
4х16
СП-2-2(2)
46,7
75
36,4
0,62
в трубе
ВВГ
10
4х16
СП2-6
17,1
34
10,7
0,50
в трубе
ВВГ
2,5
4х6
ВРУ-СП-3
171,6
216,2
23,3
0,79
в канале
АВВГ
120
4х150
СП-3-7
19,0
35
8,0
0,54
в канале
ВВГ
1,5
4х4
СП-3-1
115,3
156
9,0
0,74
в канале
АВВГ
70
4х95
СП-3-5(1)
46,7
75
16,8
0,62
в трубе
ВВГ
10
4х16
СП-3-5(2)
46,7
75
9,0
0,62
в трубе
ВВГ
10
4х16
СП-3-5(3)
46,7
75
28,0
0,62
в трубе
ВВГ
10
4х16
СП-3-3
10,1
15
9,0
0,68
в трубе
ВВГ
1
4х1,5
ВРУ-СП-4
53,4
156
66,0
0,34
в канале
АВВГ
16
4х95
СП-4-7
19,0
35
8,0
0,54
в канале
ВВГ
1,5
4х4
СП4-4
70,1
75
9,3
0,62
в трубе
АВВГ
35
4х35
СП4-5
46,7
75
2,8
0,62
в трубе
ВВГ
10
4х16
СП4-2(1)
46,7
75
16,0
0,62
в трубе
ВВГ
10
4х16
СП4-2(1)
46,7
75
30,0
0,62
в трубе
ВВГ
10
4х16
СП4-2(1)
46,7
75
40,6
0,62
в трубе
ВВГ
10
4х16
3. Выбор автоматических выключателей
Определим пиковые нагрузки ответвлений к двигателям:
,(24)
где Iпуск.дв — пусковой ток двигателя, А;
Iном.дв — номинальный ток двигателя, А;
iп — кратность пускового тока двигателя по отношению к номинальному, 6,5.
При выборе автоматических выключателей необходимо выполнить следующие условия:
1) номинальное напряжение выключателя должно соответствовать номинальному напряжению сети:
,
где Uном.в — номинальное напряжение выключателя, В;
Uном.с — номинальное напряжение сети, В.
2) номинальный ток выключателя должен быть равен или превышать расчетный ток ответвления:
,
где Iном.в — номинальный ток выключателя, А;
Iр — расчетный ток ответвления, А.
3) номинальный ток расцепителя должен быть равен или превышать расчетный ток ответвления:
,
4) ток срабатывания электромагнитного расцепителя должен превышать пусковой ток защищаемого двигателя:
,(25)
где Iср. э — ток срабатывания электромагнитного расцепителя. А;
Кн.о — коэффициент надежности отстройки электромагнитного расцепителя от пускового тока двигателя, 2,1.
5) ток срабатывания теплового расцепителя должен превышать номинальный ток двигателя:
,(26)
где Iср.т — ток срабатывания теплового расцепителя. А;
Iном.дв — номинальный ток двигателя, А.
Для выключателей питания распределительных щитов помимо условий, изложенных выше, учитываем дополнительные условие — несрабатывание токовой отсечки при полной нагрузке щита и пуске наиболее мощного электродвигателя:
,(27)
где Iср. о — ток срабатывания отсечки выключателя, А;
Кн.о — коэффициент надежности отстройки, 1,5.
Результаты расчетов сведем в таблицу 4.
Таблица 4 — Выбор автоматических выключателей в цехе
участок
расчетные данные
автоматический выключатель
Ip, A
Iпик, А
тип
Iном.в
Iном. рц
Iср. э
Iср. т
А
ВРУ-СП-1
91,3
548,0
ВА88-32
100
140
1300
130
СП-1-7
19,0
114,0
ВА47-29C
20
22,6
140
29
СП-1-5(1)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП-1-5(2)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП-1-2(1)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП-1-2(2)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП-1-3
10,1
60,6
ВА47-29C
10
11,3
70
14,5
ВРУ-СП-2
108,2
757,4
ВА88-32
160
168
1600
208
СП-2-5(1)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП-2-5(2)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП-2-1
115,3
749,5
ВА88-32
100
105
1000
130
СП-2-2(1)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП-2-2(2)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП2-6
17,1
102,6
ВА47-29C
25
28,25
150
32,5
ВРУ-СП-3
171,6
1201,2
ВА88-32
160
168
1600
208
СП-3-7
19,0
114,0
ВА47-29C
20
22,6
140
29
СП-3-1
115,3
749,5
ВА88-32
100
105
1000
130
СП-3-5(1)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП-3-5(2)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП-3-5(3)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП-3-3
10,1
60,6
ВА47-29C
10
11,3
70
14,5
ВРУ-СП-4
53,4
373,8
ВА88-32
100
140
1000
130
СП-4-7
19,0
114,0
ВА47-29C
20
22,6
140
29
СП4-4
70,1
455,7
ВА47-100 D
50
70
650
72,5
СП4-5
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП4-2(1)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП4-2(1)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
СП4-2(1)
46,7
280,2
ВА47-29C
50
56,5
350
72,5
ВРУ
465,5
3025,8
ВА88-40
500
525
5000
650
4. Определение расчетных электрических нагрузок по методу коэффициента спроса
По методу коэффициента спроса рассчитываются нагрузки всего предприятия. В соответствии с этим методом допускается определять мощности отдельных цехов по средним значениям коэффициента спроса, кВт:
, (28)
где Рном — суммарная номинальная активная мощность силовых электроприемников цеха, кВт;
Кс — коэффициент спроса данной группы электроприемников.
Расчетная реактивная мощность при известной величине Рр.н, квар:
квар,(29)
где tgц — коэффициент реактивной мощности, соответствующий заданному cosц.
Результаты расчета сведем в таблицу 5.
Таблица 5 — Расчетные нагрузки цехов тракторостроительного завода
наименование подразделения
Рном, кВт
Кс
cosц
tgц
Pp, кВт
Qp, квар
Sр, кВA
Iвнp, A
Iннp, A
1 Токарно-механическй цех
1500
0,35
0,7
1,02
525
535,6
750,0
43,3
1082,5
2 сборочный цех
2405
0,35
0,7
1,02
841,75
858,8
1202,5
69,4
1735,7
3 инструмент цех
130
0,35
0,7
1,02
45,5
46,4
65,0
3,8
93,8
4 Литейный цех
2180
0,7
0,8
0,75
1526
1144,5
1907,5
110,1
2753,2
5 Кузнечный цех
1150
0,5
0,7
1,02
575
586,6
821,4
47,4
1185,6
6 Ремонтный цех
1120
0,4
0,65
1,17
448
523,8
689,2
39,8
994,8
7 Насосная станция (СД)
2140
0,8
0,85
-0,62
1712
-1061,0
2014,1
116,3
2907,1
8 Компрессорная станция (СД)
1100
0,8
0,85
-0,62
880
-545,4
1035,3
59,8
1494,3
9 Деревообделочный цех
400
0,3
0,7
1,02
120
122,4
171,4
9,9
247,4
10 электрифиц-ый гараж
250
0,3
0,75
0,88
75
66,1
100,0
5,8
144,3
11Склад готовой продукции
180
0,4
0,8
0,75
72
54,0
90,0
5,2
129,9
12 Цех (рассчитываемый)
491
—
—
—
183
137,3
238,0
13,7
343,5
Итого
13046
—
—
—
7003
2469,2
7425,9
428,7
10718,4
Расчетная активная мощность приемников освещения цеха также определяется по методу коэффициента спроса, кВт:
,(30)
где — удельная расчётная мощность, Вт/м2;
— площадь цеха, м2;
— коэффициент спроса на осветительную нагрузку;
— коэффициент, учитывающий потери в пускорегулирующей аппаратуре (ПРА), примем для дуговых ртутных ламп (ДРЛ) ; для люминесцентных ламп (ЛЛ) ; для ламп накаливания (ЛН) ;
— нормируемое
—
— значение осветительной нагрузки; принимаем для ДРЛ ; для ЛЛ ; для ЛН ; для ДНаТ .
Полная и реактивная расчётная осветительная нагрузка определяется из выражения, кВт, кВар:
,(31)
где — коэффициент реактивной мощности электроприемников освещения;
;(32)
В курсовом проекте выбирается тип источников света для цехов и территории предприятия. Выбор количества и схемы размещения ламп не требуется. Расчеты сведены в таблицу 6.
Таблица 6 — Расчетная мощность приемников освещения
№
Наименование цеха
Тип ламп
Енорм, лк
Кпра
F, м2
Кс
Pуд, Вт/м2
Ppо, кВт
tgо
Qро, квар
Sро, кВА
1
2
3
4
5
6
7
8
9
10
11
12
1
Токарно-механическй цех
ДРЛ
300
1,1
8400
0,95
5,8
152,74
1,33
203,1
254,2
2
Cборочный цех
ДРЛ
300
1,1
8500
0,95
5,8
154,56
1,33
205,6
257,2
3
инструмент цех
ДРЛ
300
1,1
4400
0,95
5,8
80,005
1,33
106,4
133,1
4
Литейный цех
ДРЛ
300
1,1
10000
0,95
5,8
181,83
1,33
241,8
302,6
5
Кузнечный цех
ДРЛ
300
1,1
4000
0,95
5,8
72,732
1,33
96,7
121,0
6
Ремонтный цех
ДРЛ
300
1,1
2800
0,95
5,8
50,912
1,33
67,7
84,7
7
Насосная станция (СД>1кВ)
ДРЛ
300
1,1
6400
0,95
5,8
116,37
1,33
154,8
193,6
8
Компрессорная станция (СД>1кВ)
ДРЛ
300
1,1
5600
0,95
5,8
101,82
1,33
135,4
169,4
9
Деревообделочный цех
ДРЛ
300
1,1
1600
0,95
5,8
29,093
1,33
38,7
48,4
10
Электрифицирован-ный гараж
ЛЛ
200
1,2
2000
0,65
14,6
45,552
0,33
15,0
48,0
11
Склад готовой продукции
ЛЛ
200
1,2
2500
0,65
14,6
56,94
0,33
18,8
60,0
12
Цех (рассчитываемый)
ДРЛ
300
1,1
4200
0,95
5,8
76,369
1,33
101,6
127,1
Освещение предприятия
ДНаТ
100
1,1
139600
0,5
5,8
368,54
1,33
490,2
613,3
На основании предыдущих расчетов составляем сводную таблицу расчетных нагрузок цехов предприятия (таблица 7).
Таблица 7 — Расчетные мощности электроприёмников предприятия
№ це-ха
Наименование цеха
Рр.н, кВт
Рр.о, кВт
Qр.н, квар
Qр.о, квар
Pр, кВт
Qр, кВт
Sр, кВ•A
ДPт, кВт
ДQт, кВт
1
2
3
4
5
6
7
8
9
10
11
1
Токарно-механическй цех
525
152,7
535,6
203,1
677,6
738,7
1002,5
20,05
100,2
2
Cборочный цех
841,7
154,6
858,8
205,6
996,3
1064,9
1457,9
29,16
145,8
3
инструмент. цех
45,5
80,0
46,4
106,4
125,5
152,8
197,7
3,95
19,77
4
Литейный цех
1526
181,8
1144,5
241,8
1707,8
1386,3
2199,7
43,99
219,9
5
Кузнечный цех
575
72,7
586,6
96,7
647,7
683,3
941,5
18,83
94,15
6
Ремонтный цех
448
50,9
523,8
67,7
498,9
591,5
773,8
15,48
77,38
7
Насосная станция
0
116,4
0
154,8
116,4
154,8
193,6
3,87
19,36
СД>1кВ
1712
—
-1061
—
1712,0
-1061
2014,1
—
—
8
Компрессорная станция
0
101,8
0
169,4
101,8
169,4
197,7
3,95
19,77
СД>1кВ
880
—
-545,4
—
880,0
-545,4
1035,3
—
—
9
Деревообделоч-ный цех
120
29,1
122,4
48,4
149,1
170,8
226,7
4,53
22,67
10
Электрифициро-ванный гараж
75
45,6
66,1
48,0
120,6
114,1
166,0
3,32
16,60
11
Склад готовой продукции
72
56,9
54
60,0
128,9
114,0
172,1
3,44
17,21
12
Цех
183
76,4
137,3
127,1
259,4
264,4
370,4
7,41
37,04
Освещение предприятия
—
368,5
—
613,3
368,54
613,26
715,48
14,31
71,55
Итого на стороне
10 кВ
—
—
—
—
8653,3
3491,7
9331,2
186,6
933,1
Итого на стороне ВН
—
—
—
—
8839,9
4424,8
9885,5
—
—
Полная расчетная мощность электроприемников низкого напряжения цеха, по которой выбирают шинопроводы, кабели, электрические аппараты, кВА:
;(33)
Потери в трансформаторах определяем по формулам, кВт, кВар:
Pт=0,02 Sрн;(34)
Qт=0,1 Sрн;(35)
Суммарную нагрузку на стороне 10 кВ получим с учётом потерь в трансформаторах 10/0,4 кВ, кВА:
;(36)
На ГПП:
Pт = 0,029331,2 = 186,6 кВт.
Qт = 0,19331,2 = 933,1 кВар.
Расчетная активная нагрузка на внешнее электроснабжение, кВт:
,(37)
где КРМ — коэффициент разновременности максимумов, примем КРМ=0,95 [1];
РР.ВН =(8653,3+186,6)·0,95 = 8839,9 кВт.
QР.ВН = 3491,7 + 933,1 = 4424,8кВт.
кВА.
5. Выбор места расположения ГПП (ПГВ)
Для определения местоположения ГПП (ПГВ) на генплан предприятия наносится картограмма электрических нагрузок. Она представляет собой размещенные на генплане круги, площади которых в выбранном масштабе равны расчетным мощностям цехов, кВт,:
,(38)
откуда радиус окружности, мм:
,(39)
где Ppi — расчетная активная мощность i-го цеха, на стороне 10кВ, кВт;
m — масштаб мощности, кВт/мм2, 0,5.
Для каждого цеха наносится своя окружность. Каждый круг имеет заштрихованный сектор, соответствующий по площади осветительной нагрузке. Результаты расчета сведем в таблицу 8.
Таблица 8 — Выбор места расположения ГПП
наименование подразделения
Рр, кВт
x, м
y, м
Ррх, кВт*м
Ррy, кВт*м
Ri, мм
1 Токарно-механический цех
697,8
60
170
41867,3
118624
21,1
2 Сборочный цех
1025,5
160
280
164074
287130
25,6
3 инструмент цех
129,5
170
70
22008,2
9062,2
9,1
4 Литейный цех
1751,8
300
270
525547
472992
33,4
5 Кузнечный цех
666,6
290
120
193303
79987,5
20,6
6 Ремонтный цех
514,4
390
240
200612
123453
18,1
7 Насосная станция (СД)
1832,2
390
60
714575
109935
34,2
8 Компрессорная станция (СД)
985,8
450
280
443600
276018
25,1
9 Деревообделочный цех
153,0
550
120
84175,5
18365,6
9,9
10 Электрифицированный гараж
141,3
450
50
63566,2
7062,91
9,5
11Склады готовой продукции
133,5
290
50
38707,6
6673,73
9,2
12 Цех (рассчитываемый)
262,7
60
310
15761,3
81433,2
12,9
Итого
8839,9
—
—
2507798
1590737
—
Картограмма активных нагрузок цехов предприятия позволяет найти центр электрических нагрузок (ЦЭН) всего предприятия. Координаты ЦЭН можно определить по формулам, м:
(40)
(41)
где Xi, Yi — координаты центров нагрузок отдельных цехов, м.
м
м
Картограмма активных нагрузок цехов предприятия приведена на рисунке 4.
Рисунок 4 — Картограмма активных нагрузок
6. ВЫБОР НОМИНАЛЬНОГО НАПРЯЖЕНИЯ И СХЕМЫ ВНЕШНЕГО ЭЛЕКТРОСНАБЖЕНИЯ
6.1 определения рационального напряжения
При выполнении расчетов целесообразно к системе внешнего электроснабжения отнести трансформаторы, установленные на подстанции энергосистемы, а также питающие линии вместе с коммутационно-защитной аппаратурой, установленной в начале линии.
Т.к. на предприятии имеются потребители второй категорий надежности, то предусматриваем сооружение двух питающих линий на стальных опорах.
Выбор напряжений для питающих линий до ГПП предприятия выполняем следующим образом.
Для определения рационального напряжения вычисляем нестандартное напряжение, соответствующее расчетным данным. Расчет выполняем по формуле Стилла, кВ:
(42)
где L — длина линии, км;
Р — передаваемая мощность, кВт, принимается равной расчетной активной нагрузке предприятия Рр.п.
кВ
кВ
Для технико-экономического сравнения из напряжений, имеющихся на подстанции энергосистемы, выбираем ближайшие стандартные — 35 и 110кВ.
Далее определяем технико-экономические показатели для следующих вариантов: 1) строительство ВЛ-35кВ от линии 35кВ находящейся на расстоянии 8км от предприятия; 2) строительство ВЛ-110кВ от ПС-110/10кВ находящейся на расстоянии 10км от предприятия.
Исходя из расчетной нагрузки рассчитываем номинальный ток ЛЭП ВН, А:
,(43)
где n — количество параллельных линий, n = 1 (рассчитаем максимальный ток, когда питание всего предприятия осуществляется по одной линии, при отключенной второй):
A
А
Определим нестандартное сечение провода по (4), при условии работы ВЛ в нормальном режиме (обе линии в работе):
F110 = 26/1,4 = 19 мм2
F35 = 81,5/1,4 = 58 мм2
Согласно табл. 7.38 [5], минимальное сечение проводов ВЛ напряжением 35кВ и выше — 70мм2. Выбираем провод марки АС-70 на напряжение 110 кВ и 35 кВ по методу экономической плотности тока. По условию нагрева длительно допустимым током данным проводам соответствуют
При этом должно выполняться условие:
?Uдоп?5%Uном
Потеря напряжения определяется как:
;(44)
Для ВЛ-110 кВ 3х70: rуд = 0,428 ом/км, xуд = 0,444 Ом/км,
Для ВЛ-35 кВ 3х70: rуд = 0,428 ом/км, xуд = 0,432 Ом/км,
В.
Что составляет 0,17 % от Uн.
В.
Что составляет 2,7 % от Uн.
6.2 Приведенные затраты на строительство линии
Затраты определяются по формуле, т.руб/год:
З=рнК+И,(45)
гдерн — нормативный коэффициент капитальных вложений, рн = 0,12;
К — капитальные вложения, тыс.руб:
;(46)
— общая стоимость сооружения линии, для 110кВ — 24,6 тыс.р/км, для 35кВ — 20,1 тыс.р/км;
Кв — стоимость выключателей, для 110кВ — 23,6 тыс.руб, для 35кВ — 5,1 тыс.руб;
И — годовые эксплуатационные Издержки, тыс.руб/год:
И = Иэ+Иа+Ио,;(47)
Стоимость издержек на потери электроэнергии, тыс.руб/год:
,(48)
гдеКз — коэффициент загрузки линии в нормальном режиме:
Кз=Iр/Iдоп(49)
Кз110 = 26/265 = 0,09
Кз35 = 81,5/265 = 0,31
фм — время использования энергии (двусменный режим), фм=24·365·2/3=5840 ч/год;
С0 — стоимость энергии из [1], С0=0,75 коп/кВт.ч = 0,0075 руб/кВт.ч;
ДPном — потери мощности в линии при длительно допустимом токе нагрузки, кВтч:
ДPном = Iр2rл;
ДPном110 = 0,71 кВт/км
ДPном35 = 14,0 кВт/км
Иэ110 = 2·0,71·0,092·5840·0,0075·3 = 4,2 руб/год
Иэ35 = 2·14,0·0,312·5840·0,0075·6 = 1414,0 руб/год
Стоимость издержек на амортизацию Иа , тыс.руб/год:
Иа = Иа,л + Иа,в, (50)
гдеИа,л = Ка,л·Кл;(51)
Иа,в = Ка,в·Кв; (52)
Ка,л — норма амортизационных отчислений линии, Ка,л = 0,028;
Ка,в — норма амортизационных отчислений выключателей, Ка,в = 0,094;
Ио — отчисления на обслуживание, т.к. в рассматриваемых вариантах они изменяются незначительно, Ио не учитываем.
Иа110 =24,6·10·0,028 + 2·23,6·0,094 = 11,325 т.руб/год
Иа35 =20,1·8·0,028 + 2·5,1·0,094 = 5,460 т.руб/год
Затраты:
З110 =0,12(24,6·10 + 2·23,6) + 0,004 + 11,325 = 46,52 т.руб/год
З35 =0,12(20,1·8 + 2·5,1) + 1,414 + 5,46 = 27,39 т.руб/год
Выбираем вариант строительства ВЛ-35кВ, вследствие более дешевой стоимости строительства и эксплуатации.
7. ВЫБОР СХЕМЫ РАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ И ЭЛЕКТРИЧЕСКИХ АППАРАТОВ ПО ПРЕДПРИЯТИЮ
7.1 Варианты внутренней распредсети предприятия.
Внутризаводское распределение электроэнергии выполняется по радиальной, магистральной или смешанной схеме. Выбор схемы определяется категорией надежности потребителей их территориальным размещением, особенностями режимов работы.
На генплане предприятия указываем число и расположение цеховых ТП, а также источник электроэнергии — ГПП — вблизи ЦЭН. Трансформаторные подстанции цехов типа КТП располагаем около стен цеха или на осевой линии.
Для начала намечаем 2 варианта распредсети 10 кВ, для которых выбираем трансформаторы, кабельные линии. Далее, исходя из экономических показателей, принимаем лучший из них. Результаты расчетов представлены в таблице 8-11 для 2-х вариантов, представленных на рисунках 5, 6.
Рисунок 5 — План сети 10 кВ предприятия, вариант 1.
Рисунок 6 — План сети 10 кВ предприятия, вариант 2.
7.2 Выбор числа и мощности цеховых трансформаторов с учетом компенсации реактивной мощности
Для цехов с разными удельными плотностями нагрузки могут быть приняты разные номинальные мощности трансформаторов. Однако, число типоразмеров трансформаторов, применяемых на предприятии, следует ограничить до 1-2, т.к. большое их разнообразие создает неудобство в эксплуатации и дополнительные трудности в резервировании и взаимозаменяемости. Поэтому выделяем цеха с большой плотностью нагрузки и для них выбираем трансформаторы большей мощности, чем для остальной части комбината. В этом случае близкорасположенные цеха с нагрузкой <1000 кВ•А целесообразно подключать к общей ТП.
При выбранной единичной мощности цеховых трансформаторов число их в целом по предприятию зависит от степени компенсации реактивной мощности в сетях напряжением ниже 1000 В и допустимых перегрузок в нормальном и послеаварийном режимах.
К сетям НН подключается большое число потребителей реактивной мощности (РМ). Источниками РМ в этих сетях являются синхронные двигатели и конденсаторные батареи, а недостающая часть покрывается перетоком РМ из сети ВН 10 кВ. Этот переток экономически целесообразно осуществлять только в пределах загрузки трансформаторов, не превышающего принятого в ГОСТе нормативного коэффициента загрузки внорм.т, т.к. трансформаторы стоят дороже, чем конденсаторы. В этом случае выбор числа цеховых трансформаторов напряжением 10 кВ и оптимальной мощности конденсаторных батарей напряжением ниже 1000 В производится одновременно.
Предварительно принимаем минимально возможное число N0 цеховых трансформаторов, исходя их предположения, что в сети НН будет осуществлена полная внорм.т = 0,7-0,8 — для преобладающих приемников 2-й категории.
Выбор трансформаторов цеховых ТП выполняем по средней мощности Рсм, а не получасовому максимуму Рм30, т.к. постоянная времени нагрева трансформаторов, в отличие от другого электрооборудования, составляет 2,5…3 ч, следовательно, интервал времени 3Т в среднем равен продолжительности одной рабочей смены Тсм.
Полученное N0 округляем до ближайшего большего числа:
(54)
гдеДNт — добавка до ближайшего целого числа.
Окончательное число трансформаторов определяется на основе технико-экономических расчетов. При отсутствии достоверных стоимостных показателей для практических расчетов допускается оптимальное число цеховых трансформаторов определять по формуле:
(55)
где тт принимается по специальным графикам в зависимости от Nmin и ДNт.
При окончательном выборе числа цеховых трансформаторов в целом по предприятию принимаются во внимание следующие требования:
— необходимость обеспечения требований к надежности электроснабжения;
— длина КЛ напряжением ниже 1000 В не должна превышать 200 м;
— учет взаимного расположения трансформаторов и питающих линий напряжением 6-10 кВ на генплане предприятия.
Учитывая, что Nопт > N0, фактический коэффициент загрузки трансформаторов в будет меньше нормативного, т.е. появляется возможность загружать цеховые трансформаторы реактивной мощностью, передаваемой из сети напряжения 6-10 кВ.
Наибольшую РМ, которую целесообразно передать через трансформаторы в сеть НН без превышения предусмотренного внорм.т, определяется по формуле, кВар:
;(56)
Суммарная мощность конденсаторных батарей напряжением ниже 1000 В составит, квар:
;(57)
QНБК уточняется при выборе стандартных комплектных батарей (ККУ). Если оказалось, что QНБК < 0, поэтому установка КУ на данной подстанции не требуется.
Компенсирующие устройства выбираем для более экономичного варианта, выбранного согласно таблице 12.
Таблица 8 — Выбор цеховых трансформаторов и площади сечения жил кабелей РС ВН выполняем по экономической плотности тока. Далее выбранные кабели должны быть проверены по техническим условиям, к которым относят:
— продолжительный нагрев расчетным током как в нормальном (Iр.норм), так и в послеаварийном (Iр.ав) режимах;
— потеря напряжения в жилах кабелей в нормальном и послеаварийном режимах;
— кратковременный нагрев током КЗ (после расчета токов КЗ).
Технические и экономические условия приводят к различным сечениям для одной и той же линии. Окончательно выбираем сечение, удовлетворяющее всем требованиям.
Расчетные токи в нормальном и послеаварийном режимах, А:
;(58)
;(59)
Экономическое сечение жил кабелей находим по формуле, мм2:
, (60)
где Jэк — экономическая плотность тока, зависящая от типа проводника (провод или кабель) и значения величины TМ; в нашем случае Jэк = 1,4.
Рассчитанное
Проверка кабелей на падение напряжения производится по формуле, %:
;(61)
Допустимое отклонение напряжения на конце кабеля — 5%.
При проверке кабелей по условию длительного нагрева необходимо учесть, что для кабельных линий напряжением Uном?10 кВ возможны превышения длительно допустимого тока Iдоп при систематических перегрузках в нормальном режиме или авариях, если наибольший ток Ip.норм предварительной нагрузки линии в нормальном режиме был не более 80% от тока Iдоп, А:
;(62)
Коэффициент предварительной нагрузки:
;(63)
Для данного значения Кпн и tМ = 1 ч находим коэффициент допустимой перегрузки в послеаварийном режиме.
Проверка по условию длительного нагрева в послеаварийном режиме сводится к проверке выполнения условия, А:
,(64)
где Kав = 1,4.
Принимаем большее сечение, выбранное по условию экономической плотности тока, с учётом минимального сечения , которое составляет 25 мм2.
Результаты расчетов сводятся в таблицу 12.
Таблица 10 — Выбор площади сечения жил кабелей сети 10кВ, вариант 1
Линия
Sр,
кBА
Кол-во
линий
Iр.норм, А
Iр.ав, А
Площадь сечения, мм2
Мар-ка
L, м
Проклад-ка
по Jэк
по Iдл.доп
принято
1
2
2
3
4
5
6
7
8
9
10
ГПП-ТП1
1002,5
2
29,0
57,9
21
16
3х25
АСБ
220
В траншее
ГПП-ТП2
1828,2
2
52,8
105,7
38
35
3х35
АСБ
200
В траншее
ТП5-ТПЗ
368,66
2
10,7
21,3
8
16
3х25
АСБ
130
В траншее
ГПП-ТП4
2843,1
2
82,2
164,3
59
70
3х70
АСБ
60
В траншее
ГПП-ТП5
1310,2
2
37,9
75,7
27
16
3х25
АСБ
60
В траншее
ТП4-ТП6
969,50
2
28,0
56,0
20
16
3х25
АСБ
70
В траншее
ГПП-ТП7
585,07
2
16,9
33,8
12
16
3х25
АСБ
150
В траншее
ТП2-ТП8
370,36
2
10,7
21,4
8
16
3х25
АСБ
180
В траншее
ГПП-Цех7
2014,1
2
58,2
116,4
42
50
3х50
АСБ
60
В траншее
ГПП-Цех8
1035,3
2
29,9
59,8
21
16
3х25
АСБ
170
В траншее
ТП3-Цех11 (0,4 кВ)
172,08
1
150,2
150,2
107
50
4х95
АВБбшв
90
В траншее
ТП6-Цех8 (0,4 кВ)
197,68
1
102,5
102,5
73
25
4х70
АВБбшв
30
В траншее
ТП7-Цех7 (0,4 кВ)
193,64
1
118,7
118,7
85
35
4х70
АВБбшв
30
В траншее
ТП7-Цех10 (0,4 кВ)
165,96
1
182,1
182,1
130
70
3х120+
1х95
АВБбшв
30
В траншее
Таблица 11 — Выбор площади сечения жил кабелей сети 10кВ, вариант 2
Линия
Sр,
кBА
Кол-во
линий
Iр.норм, А
Iр.ав, А
Площадь сечения, мм2
Мар-ка
L, м
Проклад-ка
по Jэк
по Iдл.доп
принято
1
2
2
3
4
5
6
7
8
9
10
ГПП-ТП1
2919,8
2
84,4
168,8
60
70
3х70
АСБ
230
В траншее
ТП1-ТП2
1828,2
2
52,8
105,7
38
35
3х35
АСБ
170
В траншее
ГПП-ТПЗ
2253,1
2
65,1
130,2
47
50
3х50
АСБ
140
В траншее
ГПП-ТП4
2199,6
2
63,6
127,1
45
50
3х50
АСБ
100
В траншее
ГПП-ТП5
1113,1
2
32,2
64,3
23
16
3х25
АСБ
110
В траншее
ГПП-ТП6
1496,3
2
43,2
86,5
31
25
3х25
АСБ
115
В траншее
ТП6-Цех8
1035,3
2
29,9
59,8
21
16
3х25
АСБ
60
В траншее
ТП1-Цех3 (0,4 кВ)
197,74
1
191,5
191,5
137
70
3х120+
1х95
АВБбшв
50
В траншее
ТП2-Цех12 (0,4 кВ)
370,36
2
209,4
418,8
150
2х95
2х(4х95)
АВБбшв
30
В траншее
ТП3-Цех9 (0,4 кВ)
226,73
2
144,3
288,7
103
150
3х150+
1х120
АВБбшв
35
В траншее
ТП3-Цех10 (0,4 кВ)
172,08
1
182,1
182,1
130
70
3х120+
1х95
АВБбшв
40
В траншее
ТП5-Цех11 (0,4 кВ)
165,96
1
150,2
150,2
107
50
4х95
АВБбшв
35
В траншее
ТП6-Цех8 (0,4 кВ)
197,68
1
102,5
102,5
73
25
4х70
АВБбшв
50
В траншее
7.4 Выбор варианта внутреннего электроснабжения
Сравним стоимость двух предложенных вариантов. Поскольку Издержки на обслуживание и потери будут мало друг от друга отличаться, сравним только капиталовложения предложенных вариантов.
На основании экономического сравнения табл.12, выбираем вариант 2.
Таблица 12 — Сравнение стоимости вариантов распределительной сети 10-0,4 кВ
N
Оборудование
Кол-во,
шт., м
Стоимость руб/шт.,
руб/м.,
Стоимость, руб.
1
2
3
4
5
Вариант 1
1
АСБ-3х25
1960
220
431200
2
АСБ-3х35
400
239
95600
3
АСБ-3х50
120
340,97
40916,4
4
АСБ-3х70
120
399
47880
5
АВБбшв — 4х70
60
326,88
19612,8
6
АВБбшв — 4х95
90
415,32
37378,8
7
АВБбшв -4х120
30
490,1
14703
8
ТСЗ-250/10
6
474065
2844390
9
ТСЗ-400/10
2
548228
1096456
10
ТСЗ-630/10
4
726113
2904452
11
ТСЗ-1000/10
2
980000
1960000
12
ТСЗ-1600/10
2
1399000
2798000
Итого
12290589
Вариант 2
1
АСБ-3х25
570
220
125400
2
АСБ-3х35
340
239
81260
3
АСБ-3х50
480
340,97
163665,6
4
АСБ-3х70
460
399
183540
5
АВБбшв — 4х70
50
326,88
16344
6
АВБбшв — 4х95
155
415,32
64374,6
7
АВБбшв -4х120
90
490,1
44109
8
АВБбшв -4х150
70
598,95
41926,5
9
ТСЗ-250/10
2
474065
948130
10
ТСЗ -400/10
2
548228
1096456
11
ТСЗ -630/10
4
726113
2904452
12
ТСЗ -1000/10
2
980000
1960000
13
ТСЗ -1600/10
2
1399000
2798000
Итого
10427658
8. ВЫБОР ЧИСЛА И МОЩНОСТИ СИЛОВЫХ ТРАНСФОРМАТОРОВ
8.1 Выбор компенсирующих устройств ГПП
Расчетная реактивная нагрузка на внешнее электроснабжение, реактивная мощность, которую целесообразно принимать из системы, кВар:
QС = РрВН · tgц,(65)
гдеtgц =0,329, соответствует коэффициенту мощности = 0,95.
QС = 8839,9 · 0,329 = 2900 кВар
Суммарная мощность, которую необходимо скомпенсировать на предприятии определяется исходя из соотношения, кВар:
QКУ = QР — QС;(66)
QКУ =4425 — 2900 =1525 кВар
Суммарная мощность конденсаторных батарей по 0,4 кВ составит:
QНБК0,4 = 96+192+67+67+384 = 806 кВар.
Остальную реактивную мощность 1525 — 806 = 719 кВар скомпенсируем на ГПП.
На ГПП устанавливаем 2 комплектные конденсаторные установки УКЛ(П)56-6,3(10,5)-450 напряжением 10 кВ, мощностью 450 кВар каждая, с автоматическим регулированием по напряжению на шины ГПП. Т.о. суммарная мощность конденсаторных батарей по 10 кВ составит:
QНБК10 = 2·450 = 900 кВар.
QКУ = 900 + 806 = 1706 кВар
8.2 Выбор числа и мощности силовых трансформаторов ГПП, с учетом компенсации реактивной мощности
Полная нагрузка на внешнее электроснабжение, с учётом компенсации РМ, кВА:
;(67)
кВА
Для установки на ГПП примем два трансформатора, так как на предприятии в основном потребители 2 категории.
Мощность одного трансформатора определим как, кВА:
,(68)
гдеn — количество трансформаторов, ;
Кз — коэффициент загрузки, исходя из категории потребителей, Кз=0,7.
Sном = 9248,6/(2·0,7) = 6606 кВА
Примем к установке на ГПП два трансформатора ТМН-10000/35.
Проверяем трансформатор по перегрузочной способности при аварийном отключении второго трансформатора:
1,4 Sном Sр;(69), 1,4·10000 > 9248,6
Трансформатор проходит по перегрузочной способности.
9. РАСЧЕТ ТОКОВ КЗ
9.1 Расчет параметров схемы замещения
Рисунок 7 — Схема расчета токов к.з.
Рисунок 8 — Схема замещения
Сопротивление системы, приведенное к 10 кВ, Ом:
,(70)
где — относительное сопротивление системы, приведенное к Uc = 110 кВ из [1] =0,3;
SC — мощность энергосистемы, SC = 1000 МВт из [1].
Ом.
Сопротивление силовых трансформаторов приведенное к 10 кВ, Ом:
,(71)
где uk — напряжение к.з. трансформатора, %.
Для трансформатора ГПП (ТД-10000/35):
Ом
Для цехового трансформатора в ТП-2 (ТМ-1000/10):
Ом
Сопротивление СД, Ом:
;(72)
,(73)
где Pн — номинальная мощность двигателя, МВА, Pн1 = 1,07, Pн2 = 0,55 МВт;
з — КПД, з1 = 0,946, з2 = 0,92;
cosц —коэффициент мощности, cosц1 = 0,85, cosц2 = 0,85;
Iн — номинальный ток, А, Iн1 =59, Iн2 =30;
x» — сверхпереходное сопротивление, о.е., x1» = 0,2, x2» = 0,2.
Ом
кВ
Ом
кВ
Сопротивление линий:
,(74)
где n — количество параллельных линий,
L — длинна линии, км.
Для АС-70 (ВЛ-35кВ) — rуд = 0,428 ом/км, xуд = 0,432 Ом/км
Для АСБ-10-3х25 (КЛ-10кВ) — rуд = 1,24 ом/км, xуд = 0,099 Ом/км
Для АСБ-10-3х35 (КЛ-10кВ) — rуд = 0,89 ом/км, xуд = 0,085 Ом/км
]]>