Учебная работа. Курсовая работа: Расчёт системы электроснабжения электрической железной дороги
ВВЕДЕНИЕ
Вся совокупность устройств, начиная от генератора электростанции и кончая тяговой сетью, составляет систему электроснабжения электрифицированных железных дорог. От этой системы питаются электрической энергией, помимо собственно электрической тяги (электровозы и электропоезда), также все нетяговые железнодорожные потребители и потребители прилегающих районов. Поэтому электрификация железных дорог решает не только транспортную проблему, но и способствует решению важнейшей народнохозяйственной проблемы – электрификации всей страны.
Главные преимущества электрической тяги перед автономной (имеющей генераторы энергии на самом локомотиве) определяются централизованным элекроснабжением и сводятся к следующему:
1. Производство электрической энергии на крупных электростанциях приводит, как всякое массовое производство, к уменьшению её стоимости, увеличению их к.п.д. и снижению расхода топлива.
2. На электростанциях могут использоваться любые виды топлива и, в частности, малокалорийные – нетранспортабельные (затраты на транспортировку которых не оправдываются). Электростанции могут сооружаться непосредственно у места добычи топлива, вследствие чего отпадает необходимость в его транспортировке.
3. Для электрической тяги может использоваться гидроэнергия и энергия атомных электростанций.
4. При электрической тяге возможна рекуперация (возврат) энергии при электрическом торможении.
5. При централизованном элетроснабжении потребная для электрической тяги мощность практически не ограничена. Это даёт возможность в отдельные периоды потреблять такие мощности, которые невозможно обеспечить на автономных локомотивах, что позволяет реализовать, например, значительно большие скорости движения на тяжелых подъёмах при больших весах поездов.
6. электрический локомотив (электровоз или элктровагон) в отличие от автономных локомотивов не имеет собственных генераторов энергии. поэтому он дешевле и надёжнее автономного локомотива.
7. На электрическом локомотиве нет частей, работающих при высоких температурах и с возвратно-поступательным движением (как на паровозе, тепловозе, газотурбовозе), что определяет уменьшение расходов на ремонт локомотива.
преимущества электрической тяги, создаваемые централизованным электроснабжением, для своей реализации требуют сооружения специальной системы электроснабжения, затраты на которую, как правило значительно превышают затраты на электроподвижной состав. Надёжность работы электрифицированных дорог зависит от надёжности работы системы электроснабжения. Поэтому вопросы надёжности и экономичности работы системы электроснабжения существенно влияют на надёжность и экономичность всей железной дороги в целом.
РЕФЕРАТ
В данном курсовом проекте произведён расчёт системы электроснабжения электрической железной дороги, а именно 2-х путного участка, электрифицированного на однофазном токе промышленной частоты. Определена мощность и количество тяговых трансформаторов одной ТП, определено экономическое сечение проводов контактной сети, рассчитаны годовые потери в контактной сети, для раздельной и узловой схемы, произведен технико-экономический расчет для сравнения схем. произведен расчет среднего уровня напряжения в контактной сети, рассчитаны минимальные токи короткого замыкания и выбрана защита расчетного участка от тока короткого замыкания, а также рассчитано реактивное электpопотpебление расчетной тяговой подстанции, мощность установки параллельной компенсации и её параметры.
ЗАДАНИЕ
1. Определить мощность тяговой подстанции, выбрать мощность и количество тяговых трансформаторов
2. Определить экономическое сечение проводов контактной сети межподстанционной зоны для раздельной и узловой схемы питания
3. рассчитать годовые потери электрической энергии в контактной сети для этих схем
4. Провести проверку выбранного сечения проводов контактной сети по нагреву
5. Провести технико-экономический расчет для сравнения раздельной и узловой схем питания
6. Для схемы раздельного питания произвести расчет среднего уровня напряжения в контактной сети до расчетного поезда на условном перегоне и блок участке при максимальном использовании пропускной способности
7. Рассчитать перегонную пропускную способность с учетом уровня напряжения
8. рассчитать минимальный ток к.з. и максимальные рабочие токи двух схем питания, выбрать схемы защит контактной сети от коротких замыканий
9. Составить принципиальную схему питания и секционирования контактной сети расчетного участка
рассчитать реактивное электpопотpебление расчетной тяговой подстанции, мощность установки параллельной компенсации и ее параметры
ИСХОДНЫЕ ДАННЫЕ
1. Схема участка с упрощенными тяговыми расчетами
Типы тяговых подстанций II и III;
2. расположение тяговых подстанций:
ТП №1 L1
= 18 км;
ТП №2 L2
= 62 км;
Тип дороги – магистральная;
3. Число путей — 2
4. Тип рельсов — P65
5. размеры движения:
Число пар поездов в сутки: 75
6. минимальный межпоездной интервал θo
= 10 мин;
Твх
= 3 ч;
7. Номинальное напряжение тяговых подстанций Uн
= 27.5 кВ;
8. продолжительность периода повышенной интенсивности движения:
Tвос
=1,7 часа;
9. Трансформаторная мощность районных потребителей S =5 МВ×А;
10. Мощность короткого замыкания на вводах подстанции Sкз
= 700 МВ×А;
11.Эквивалентная температура в весенне-летний период и температура в период повышенной интенсивности движения после окна: θc
= 25ºС; θo
= 15ºС;
12.длительность весенне — летнего периода nвл
= 230 суток;
13.Амортизационные отчисления:
а) Контактная сеть ак
= 4,6 %;
б) Посты секционирования ап
= 5,5 %;
1. ОПРЕДЕЛЕНИЕ МОЩНОСТИ ТЯГОВОЙ ПОДСТАНЦИИ И КОЛИЧЕСТВА ТЯГОВЫХ ТРАНСФОРМАТОРОВ
1.1 Определение средних и эффективных значений тока поезда, фидеров контактной сети тяговой подстанции
а) строим зависимость тока поезда от времени и расстояния In
(l),In
(t);
б) располагаем тяговые подстанции;
в) строим векторные диаграммы напряжений тяговых подстанций
г) определяем поездные токи на каждом километре в четном и нечетном направлении по зависимости поездного тока от расстояния In
(l)
Методика расчета токов фидеров контактной сети:
Для одностороннего питания ток поезда полностью равен току фидера: Iф
= Iп
. Для двухстороннего питания ток поезда распределяется между фидерами смежных подстанций обратно пропорционально расстояниям:
(1)
Рис.1
Кривые поездного тока раскладываем по фидерам смежных подстанций четного и нечетного пути по формулам (1) для схемы раздельного питания пути и заносим в таблицу 1.
По данным таблицы 1 строим кривые токов фидеров расчетной тяговой подстанции Iф
(l), разложенная кривая поездного тока. По разложенной кривой поездного тока определяем средние и эффективные токи фидеров контактной сети и другие числовые характеристики расчетной тяговой подстанции. Также выбираем самую загруженную межподстанционную зону, и производим расчет средних и эффективных токов четного и нечетного пути.
Таблица 1. Поездной ток по километрам четного и нечетного пути и фидеров тяговых подстанций
Расстояние
от ТП, км
Iнечет
Поезда, А
Iчет
поезда, А
ТП1
ТП2
Iф1
,А
Iф2
,А
Iф5
,А
Iф4
,А
Iф1
,А
Iф2
,А
Iф5
,А
Iф4
,А
0
0
120
0
120
1
0
280
0
280
2
160
320
160
320
3
180
280
180
280
4
180
330
180
330
5
180
330
180
330
6
180
330
180
330
7
180
330
180
330
8
180
330
180
330
9
180
330
180
330
10
180
330
180
330
11
180
320
180
320
12
180
270
180
270
13
180
240
180
240
14
170
190
170
190
15
200
170
200
170
16
220
160
220
160
17
240
160
240
160
18
270
160
270
160
19
300
160
156
300
0
4
20
300
160
153
293
7
7
21
300
160
149
286,5
13,5
11
22
320
0
0
298
21
0
23
240
0
0
218
22
0
24
0
120
104
0
0
16
25
160
320
269
135
25
51
26
160
280
229
131
29
51
27
160
240
191
127
33
49
28
200
220
170
154,5
45,5
50
29
210
210
157,5
157,5
52,5
52,5
30
210
200
145,5
153
57
54,5
31
210
200
141
148
62
59
32
210
190
129,5
143
67
60,5
33
210
180
118,5
138,5
71,5
61,5
34
210
170
108
133,5
76,5
62
35
210
165
101
129
81
64
36
210
160
94,5
124
86
65,5
37
210
160
91
119
91
69
38
230
230
125,5
125,5
104,5
104,5
39
200
260
136
104,5
95,5
124
40
190
270
135
95
95
135
41
170
270
129
81
89
141
42
150
270
123
68
81
147
43
140
270
116,5
60,5
79,5
153,5
44
140
270
110,5
57
83
159,5
45
140
270
104,5
54
86
165,5
46
140
270
98
51
89
172
47
140
270
92
47,5
92,5
178
48
140
270
86
44,5
95,5
184
49
140
270
80
41,5
98,5
190
50
200
240
65,5
54,5
145,5
174,5
51
240
200
50
60
180
150
52
240
190
43
54,5
185,5
147
53
240
190
39
49
191
151
54
240
190
34,5
43,5
196,5
155,5
55
230
190
30
36,5
193,5
160
56
230
190
26
31,5
198,5
164
57
230
190
21,5
26
204
168,5
58
230
180
16,5
21
209
163,5
59
220
180
12
15
205
168
60
220
180
8
10
210
172
61
0
180
4
0
0
176
62
0
200
0
0
0
200
63
0
250
250
0
64
0
280
280
0
65
0
280
280
0
66
0
280
280
0
67
0
280
280
0
68
0
280
280
0
69
0
240
240
0
70
0
200
200
0
71
0
200
200
0
72
0
200
200
0
73
160
200
200
160
74
170
200
200
170
75
170
150
150
170
76
190
150
150
190
77
200
150
150
200
78
200
150
150
200
79
200
150
150
200
80
200
150
150
200
методика расчета:
1. Кривая разложенного и неразложенного тока разделяется на отрезки 40-60 А.
2. Определяются средние токи отрезков и .
3. Определяется время движения на этом участке, ti
4. Определяется произведение [А×мин], [А²×мин].
5. По сумме этих произведений определяется средний ток и значение квадрата тока.
,А (2)
,А (3)
, А (4)
где Iср t – время хода поезда по фидерной зоне; Результаты расчетов по формулам (2), (3) и (4) заносим в таблицы 2 и 3. Таблица 2.1. исходная информация и расчёт среднего и эффективного поездного тока фидера №2 расчётной тяговой подстанции Iф2 D I,A Iср Iср 0-120 120-160 160-220 220-280 280-330 S А; А2 А. Таблица 2.2. исходная информация и расчёт среднего и эффективного поездного тока фидера №1 расчётной тяговой подстанции Iф1 D I,A Iср Iср 120-160 160-200 200-240 240-270 S А; А2 А. Таблица 2.3. исходная информация и расчёт среднего и эффективного поездного тока фидера №5 расчётной тяговой подстанции Iф5 D I,A Iср Iср 0-60 60-100 90-100 100-136 100-160 160-220 220-270 S А; А2 А. Таблица 2.4. исходная информация и расчёт среднего и эффективного поездного тока фидера №4 расчётной тяговой подстанции Iф4 D I,A Iср Iср 160-160 S А; А2 160 А. Таблица 3.1. исходная информация и расчет среднего и эффективного поездного тока для наиболее загруженной межподстанционной зоны для четного направления. четная D I,A Iср Iср 310-260 260-300 300-300 300-240 240-180 180-160 160-160 0-0 160-160 160-200 200-260 260-260 260-200 200-200 200-180 S А; А2 225.4 А. Таблица 3.2. исходная информация и расчет среднего и эффективного поездного тока для наиболее загруженной межподстанционной зоны для нечетного направления. нечетная D I,A Iср Iср 160-160 160-220 220-220 220-160 160-160 160-200 200-240 240-240 S А; А2 206.7 А. Для токов фидеров рассчитываем следующие числовые характеристики: среднее квадратичное отклонение тока фидера (5) коэффициент эффективности (6) коэффициент вариации (7) Результаты вычислений, полученные по формулам (5), (6) и (7) заносим в таблицы 4 и 5. Таблица 4. Числовые характеристики поездного тока фидеров расчетной тяговой подстанции и времени хода по межподстанционной зоне. фидер I Kv t хода Iф2 96,2 Iф1 69,9 Iф5 210,8 Iф4 160,0 Таблица 5. Числовые характеристики тока четного и нечетного пути наиболее загруженной межподстанционной зоны, время хода по межподстанционной зоне и электpопотpебления в зоне. путь I Kv tхода tпотр. чет. нечет. 1.2 Определение средних токов фидеров контактной сети для расчетных режимов расчетной тяговой подстанции исходными данными для расчёта нагрузок фидеров и подстанций, а также для расчёта потерь мощности и проверки контактной сети по уровню напряжения, являются средние и эффективные значения поездного тока фидеров. Зная средние и эффективные значения поездного тока, отнесенного к фидеру, можно найти средние и эффективные токи фидера от всех нагрузок. Для этого воспользуемся формулами, которые справедливы для однотипных поездов: для средних токов: , А; (8) для эффективных: при двустороннем питании: ,А (9) где nф t — время хода поезда, мин; N — число поездов в сутки; No — пропускная способность (пар поездов в сутки). Расчетные режимы определяются процессами нагревания трансформаторов. Поэтому нагрев масла определяем для режима сгущения, то есть для периода составления нормального графика движения после окна. Постоянная времени и обмоток 6 — 8 мин, поэтому максимальная температура определяется максимальным нагревом трансформатора, который может возникнуть при максимальной пропускной способности. Пропускная способность определяется прохождением числа поездов в сутки. При выборе мощности трансформатора рассмотрим три режима: 1. заданное количество поездов: Коэффициент использования пропускной способности: , (10) где No = 1440 / θo; (11) No — пpопускная способность, пар поездов в сутки; θo — минимальный межпоездной интеpвал, мин; Согласно исходным данным: Nзад θo Используя выражение (11) получим: No Согласно выражению (10) получим: = 0,556; Средние и эффективные токи фидеров, определённые по формулам (8) и (9) для заданного режима занесём в таблицу 6. Таблица 6. Числовые характеристики токов фидеров контактной сети расчётной тяговой подстанции при заданном режиме фидер I Kv nф Iф2 325,9 Iф1 139,9 Iф5 234,2 Iф4 177,8 1. Режим сгущения: 0.9; (12) Nсг Средние и эффективные токи фидеров, определённые по формулам (8) и (9) для режима сгущения занесём в таблицу 7. Таблица 7. Числовые характеристики токов фидеров контактной сети расчётной тяговой подстанции в режиме сгущения фидер I Kv nф Iф2 527,9 Iф1 226,6 Iф5 379,4 Iф4 288,0 2. Режим максимальной пропускной способности: 1 (13) Nmax Средние и эффективные токи фидеров, определённые по формулам (8) и (9) для режима максимальной пропускной способности занесём в таблицу 8. Таблица 8. Числовые характеристики токов фидеров контактной сети расчётной тяговой подстанции в режиме максимальной пропускной способности фидер I Kv nф Iф2 586,6 Iф1 251,8 Iф5 421,6 Iф4 320,0 1.3 Определение средних и эффективных токов плеч питания расчетной тяговой подстанции после определения средних нагрузок фидеров тяговой подстанции определим нагрузки плеч питания. Для двухпутного участка будем иметь средние токи плеч: (14) квадраты эффективных токов плеч: (15) Результаты расчётов для трех режимов, полученные по формулам (14) и (15) сведем в таблицу 9. Таблица 9. Числовые характеристики токов плеч питания расчётной тяговой подстанции Режим sI Kv заданный g = 0,556 I II Сгущения gсг I II макс. gmax I II 1.4 Определение расчетных токов трансформатора. Эквивалентный эффективный ток по нагреву масла Нагрев масла в трёхфазном трансформаторе будет определяться потерями в обмотках трех фаз, которые при несимметричной нагрузке будут неодинаковы. Эквивалентный эффективный ток по нагреву масла определяем при заданных размерах движения, режима сгущения и для режима максимальной пропускной способности по формуле: , А2 Для проверки температуры обмотки должен быть найден эффективный ток обмотки при максимальных и заданных размерах движения: , А2 , А2 , А2 Из трех токов выбираем максимальный. 1. Заданный режим Используя выражение (16) получим: А2 А; Согласно формулам (17), (18) и (19) получим: А2 А2 За расчётный ток принимаем ток второй обмотки, так как он имеет наибольшее А. 2. Режим сгущения: Используя выражение (16) получим: А2 А; Согласно формулам (17), (18) и (19) получим: А2 А2 За расчётный ток принимаем ток второй обмотки, так как он имеет наибольшее А. 3. Максимальный режим Используя выражение (16) получим: А2 А; Согласно формулам (17), (18) и (19) получим: А2
А2 За расчётный ток принимаем ток второй обмотки, так как он имеет наибольшее А. 1.5 Расчет мощности трансформатора 1.5.1 Основной расчет Для расчета трансформаторной мощности выбираем по каталогу мощность трансформаторов Sн Мощность трансформаторов, необходимую для питания тяги определим по формуле: , МВ×А (20) где Kу Sp.pасч Sp.pасч Мощность тяги Используя выражение (20) получим: МВ×А. По мощности Sнт , А (21) где Uш Согласно выражению (21) будем иметь: А. Кратность нагрузки по обмоткам трансформатора 1. Для заданного количества поездов ; (22) где Iэо ; 2. Для режима сгущения ; (23) где Iэсг Используя выражение (23) получим: ; 3. Для максимального режима , А (24) Если Kmax Используя выражение (24) получим: ; Мощность трансформатора выбираем по средней интенсивности относительного износа витковой изоляции и проверяем по максимальной температуре наиболее нагретой точки обмотки и верхних слоев масла. Средняя интенсивность износа изоляции обмотки трансформатора в сутки предоставления окна: , (25) где . (26) где Qинтб Qинтб Qохлс α = 0.115 — коэффициент, определяющий скорость старения изоляции; итак, ; (27) ; (28) В выражении (28) . (29) В выражениях (27), (28) и (29): a, b, g, h — постоянные в выражениях, аппроксимирующие зависимости разности температур обмотка-масло и масло — окружающая среда(они равны: a = 17,7; b = 5,3; g = 39,7; h = 15,3ºC); to τ = 3ч — тепловая постоянная времени масла. Используя выражение (29) получим: ; Согласно выражениям (27) и (28) получим: ; Используя выражение (25) получим: Так как F1 Если F1 , (30) где nсг nсг Выбор мощности трансформатора по току Ioном Smin Smax где Kу Используя выражения (31) и (32) получим: Smin Smax 1.5.2 Уточнённый расчета мощности трансформатора Коэффициент, учитывающий Износ изоляции обмотки за счет нагрева масла в период нормального графика: ; Более точное значение среднегодового износа находят по формуле: , ( 33) где nвл nсг = 21-2.5 –0.78 = 17.72 часа; , (34) где Qохл0 Согласно выражению (34) получим: ; Используя выражение (33) будем иметь: =0.00314; Используя выражение (30) произведём пересчёт номинального тока: = 286.8 А. Расчётная мощность Sрасч или Sрасч Вывод: выбранные трансформаторы по мощности проходят. 1.5.3 Проверка трансформаторов по максимальному току, максимально допустимому току и максимально допустимым температурам обмотки и масла ток, соответствующий располагаемой мощности для тяги определим по формуле: , А (35) Используя выражение (35) получим: А. Коэффициент сгущения: <1.5; максимальную температуру масла определим по формуле: <950
С; (36) Используя выражение (36) получим: 0 максимальная температура обмотки: <1400
C; (37) Согласно выражению (37) будем иметь: <1400
C; В нормальных условиях заданные размеры движения должны быть обеспечены при работе одного трансформатора 95 0 140 0 где I1нт где Sнт А. Согласно выражению (38) получим: 0 Используя выражение (39) получим: 0 Вывод: Трансформаторы по максимальному току, максимально допустимому току и максимально допустимым температурам обмотки и масла проходят. 2. ОПРЕДЕЛЕНИЕ ЭКОНОМИЧЕСКОГО СЕЧЕНИЯ ПРОВОДОВ КОНТАКТНОЙ СЕТИ одной МЕЖПОДСТАНЦИОННОЙ ЗОНЫ ДЛЯ РАЗДЕЛЬНОЙ И УЗЛОВОЙ СХЕМ ПИТАНИЯ Для раздельной схемы питания: Общее сечение проводов контактной сети в медном эквиваленте: мм2 где В0 Энергию потерь по четному и нечетному пути определим по формуле: Wт где Np Uш t – время хода поезда в режиме тяги; tт.чет tт.нечет Iср Согласно выражению (41) получим: для чётного пути: Wт.ч для нечётного пути: Wт.неч годовые удельные потери в проводах контактной сети определим по формуле: , кВт×ч/Ом×год. (42) где — напряжение контактной сети, кВ (=25 кВ); Tпер t – полное время хода поезда по фидерной зоне, час. tт.чет Используя выражение (42) получим: для чётного пути: 451664.59 кВт×ч/Ом×год. Используя выражение (40) получим: мм2 для нечётного пути: 382042.92 кВт×ч/Ом×год. Используя выражение (40) получим: 284.32 мм2 Для узловой схемы питания: Общее сечение проводов контактной сети в медном эквиваленте: мм2 Общий расход энергии определим по формуле: Wт Согласно выражению (44) получим: Wт годовые удельные потери в проводах контактной сети определим по формуле: (45) Используя выражение (45) получим: Экономическое сечение проводов контактной сети по (43): мм2 По результатам расчетов выбираем подвеску М120 + МФ100 + А185; для этой подвески сечение: F = 120+100+=328.82 мм²; 3. ПРОВЕРКА КОНТАКТНОЙ СЕТИ ПО НАГРЕВУ Для подвески М120 + МФ100 + А185 допустимый ток 1230 А, его нужно сравнить с эффективными токами фидеров контактной сети при режиме максимальной пропускной способности Iфэ1 Iфэ5 Вывод: подвеска М120 + МФ100 + А185 по нагреву проходит. 4. годовые ПОТЕРИ ЭЛЕКТРОЭНЕРГИИ В КОНТАКТНОЙ СЕТИ ДЛЯ РАЗДЕЛЬНОЙ И УЗЛОВОЙ СХЕМЫ ПИТАНИЯ
DWгод где l — длина зоны,км; l =40км; ra ra Согласно выражению (45) получим: DWг.ч DWг.неч DWг.узл DWг.разд 5. ТЕХНИКО-ЭКОНОМИЧЕСКИЙ РАСЧЕТ ПО сравнению С РАЗДЕЛЬНОЙ И УЗЛОВОЙ СХЕМ ПИТАНИЯ Приведённые ежегодные расходы определим по формуле: Спр Е = Ен где Ен Еак.с. Еo Еап.с. DА — стоимость потерь электроэнергии в год; DА = DWгод где Кэ для раздельной схемы питания: Спр.разд Kкс ΔAразд Cпр.разд для узловой схемы питания Спр.узл Kп.с. ΔAузл Cпр.узл Кузл Срок окупаемости: 8 лет; (48) Используя выражение (48) получим: 8 лет; Вывод: вариант с узловой схемой наиболее выгоден, так как капиталовложения больше чем у раздельной, но ежегодные приведённые затраты меньше. Срок окупаемости 1.25 < 8 лет; 6. РАСЧЕТ СРЕДНЕГО УРОВНЯ НАПРЯЖЕНИЯ В КОНТАКТНОЙ СЕТИ ДО РАСЧЕТНОГО ПОЕЗДА НА УСЛОВНОМ ЛИМИТИРУЮЩЕМ ПЕРЕГОНЕ И БЛОК — УЧАСТКЕ ПРИ ПОЛНОМ ИСПОЛЬЗОВАНИИ ПРОПУСКНОЙ способности Условный перегон находится в середине межподстанционной зоны, если в середине токи маленькие, то условный перегон перемещают в зону с большими токами. В пределах условного перегона выделяется блок участок, равный 1/3 длинны условного перегона. Скорость поезда зависит от выпрямленного напряжения, которое пропорционально среднему за полупериод напряжению переменного тока. Поэтому в первую очередь интересуют именно эти значения напряжения и потерь напряжения. Расчет потерь напряжения тяговой сети и выпрямленных токов, приведённых к напряжению контактной сети: потери напряжения в тяговой сети: DUc где D Uk D Uр Расчет ведется аналогично как и при постоянном токе, поэтому надо привести сопротивление контактной сети и рельсов к постоянному току. Zкс , В (50) где U = 25000 В; Wkgд tkgд Wg m = t / qo (51) где Wg WgI(II) потери напряжения на тяговой подстанции определим по формуле: DUn где кэф хвт , Ом. (53) где Sн uк Sкз j — угол сдвига первой гармоники тока относительно напряжения, равен 370 Iпмax , А (54) где Iamax Средний уровень напряжения у ЭПС определим, используя выражение: U = 0,9×27500 — DUc 1. Средний уровень напряжения у поезда на условном перегоне: Определим по формуле (49): tI tII WkgД Wg Wg l1 Используя выражение (50) получим: =737.72 В. Согласно выражению (51) получим: потери напряжения в тяговой сети согласно (49): DUc Сопротивление трансформатора и внешней сети определим из выражения (53) , Ом. Средний выпрямленный ток подстанции при максимальных размерах движения определим по формуле (54): , А; потери напряжения на тяговой подстанции определим по формуле (52): DUn Средний уровень напряжения у поезда на условном перегоне определим, используя выражение (55): U = 0,9×27500 — DUc кроме того, необходимо найти среднее значение напряжения за время хода поезда по блок-участку, что при разграничении поездов блок — участками Тпер потери напряжения на блок-участке определим по формуле: DUбу Средний уровень напряжения на блок-участке определим по формуле: Uбу где 1,11 — коэффициент для перехода к потери действующего напряжения; Напряжение на блок — участке должно быть не менее 21 кВ; Uбу 2. Средний уровень напряжения на блок-участке: tI tII WkgД Wg Wg Используя выражение (50) получим: =800.91 В. Согласно выражению (51) получим: потери напряжения в тяговой сети согласно (56): DUбу потери напряжения на тяговой подстанции определим по формуле (52): DUn Средний уровень напряжения на блок-участке согласно (57): Uбу Вывод: напряжение на блок-участке удовлетворяет условию по минимальному уровню напряжения в тяговой сети, то есть Uбу 7. РАСЧЁТ ПЕРЕГОННОЙ ПРОПУСКНОЙ способности С УЧЕТОМ УРОВНЯ НАПРЯЖЕНИЯ По найденному значению напряжения можно откорректировать минимальный межпоездной интервал и перегонную пропускную способность: , мин (58) где Zэ I — средний ток электровоза за tэ Пропускная способность определится как , (59) Пересчитаем межпоездной интервал и пропускную способность участка по формуле (58): Iср Тпер мин. Пропускную способность определим по формуле (59): пара поездов; пар поездов. 8. РАСЧЁТ минимальных ТОКОВ КОРОТКИХ ЗАМЫКАНИЙ И МАКСИМАЛЬНЫХ РАБОЧИХ ТОКОВ двух СХЕМ ПИТАНИЯ, ВЫБОР СХЕМЫ ЗАЩИТ КОНТАКТНОЙ СЕТИ ОТ коротких ЗАМЫКАНИЙ 8.1 Ток короткого замыкания может быть определён: , А (60) где Uнк lкз максимальный ток фидера определим в предположении что ток фидера составляет сумму тока трогания одного ЭПС и отнесённого к этому фидеру средних токов других ЭПС. При раздельном питании Iф где Iтр При узловой схеме питания: Iфmax где nф1 I1 Установки защиты должны удовлетворять условиям для ВЛ 80н; Iтр кв (63) 1. Расчет для раздельной схемы питания: Zтс Согласно выражению (60) определим минимальный ток короткого замыкания: 1473.29 А; Максимальный ток фидера определим по формуле (61) Iф max ч Iф max неч ток уставки защиты определим по формуле: , А (64) Согласно выражению (64) получим: А; Iк Максимальной токовой защиты не достаточно, необходимо снабдить схему электронной защитой фидера. 2. Расчет для узловой схемы питания Zтс Согласно выражению (60) определим минимальный ток короткого замыкания: 2279.1 А; Максимальный ток фидера определим по формуле (62): Iф max ч Iф max неч ток установки защиты определим по формуле (64): А; Iк Максимальной токовой защиты не достаточно, необходимо снабдить схему электронной защитой фидера. 8.2 Расчет уставок электронной защиты фидера ТП Первая ступень защиты — ненаправленная дистанционная защита является основной и отключает без выдержек времени в пределах 80-85% зоны. При коротком замыкании с шинами подстанции предусмотрен автоматический перевод первой ступени защиты в режим токовой отсечки. Этот перевод обусловлен понижением напряжения на шинах тяговой подстанции до определённого уровня. вторая ступень защиты — направленная защита с выдержкой времени 0,5 сек. Она резервирует первую ступень защиты. Во второй ступени используется фазовый орган, который ограничивает характеристику срабатывания реле в заданном диапазоне. Расчет установок электронной защиты Определение сопротивления тяговой подстанции , Ом (65) Сопротивление срабатывания первой ступени защиты Zcpi где kотс Zвхi Zвх Z1 Выбранное сопротивление Zсрi (68) где Zнmin Ом; (69) где кв При понижении напряжения на шинах тяговой подстанции ненаправленная дистанционная защита переводится в режим токовой отсечки. Напряжение перевода: , В; (70) где Ukmin , В ; (71) Umin где Z2 ток срабатывания отсечки: Iсзуто где Iкзmax , А; (73) Umax Выбранное
; (74) Сопротивление срабатывания направленной дистанционной защиты(вторая ступень) Zсз|| где Zкзmax Zкзmax Расчет: Определяем сопротивление тяговой подстанции и внешней сети по формуле (65) : 5.07 Ом; Z1 Согласно выражению (67): Zвх Сопротивление срабатывания первой ступени защиты определим по формуле (66) Zсзi Выбранное сопротивление проверяем на селективность по отношению к токам нагрузки фидера, используя выражение (68) Минимальное сопротивление определим по формуле (69): Zнmin 5,1012,525 Ом; минимальное напряжение при коротком замыкании в конце линии по формуле(71): В; Напряжение перевода в токовую отсечку по формуле (70): Uсзто максимальный ток короткого замыкания в конце линии по формуле (73): А; ток срабатывания токовой отсечки по формуле (72): Iсзуто Проверяем ток срабатывания защиты на селективность по отношению к токам нагрузки по формуле (74): Условие выполняется Сопротивление срабатывания второй ступени защиты. Максимальное сопротивление короткого замыкания на шинах смежной подстанции определим по формуле (76): Zкзmax Сопротивление срабатывания второй ступени защиты по формуле (75): Zсз|| Вывод: электронная защита фидера контактной сети полностью удовлетворяет условиям нормальной работы, так как она надёжно отстроена от минимального сопротивления нагрузки и максимальных токов нагрузки фидеров для узловой схемы. 9. РАСЧЕТ РЕАКТИВНОГО ЭЛЕКТРОПОТРЕБЛЕНИЯ РАСЧЕТНОЙ ТЯГОВОЙ ПОДСТАНЦИИ, МОЩНОСТЬ УСТАНОВКИ ПАРАЛЛЕЛЬНОЙ КОМПЕНСАЦИИ И ЕЁ параметры Рис.2. Схема включения компенсирующей установки на тяговой подстанции. Q = U×I×sin(37º) P = U×I× cos(37º) 9.1 Определение реактивной мощности плеч питания: Q| Q|| 9.2 Определение активной мощности плеч питания P| P|| 9.3. Определение экономического значения реактивной мощности tg(φэ Qэ Qэ| Qэ|| 9.4 Мощность, подлежащая компенсации Qку Qку| Qку|| 9.5 ориентировочное значение установленной мощности КБ Qуст kg Qуст| Qуст|| 9.6 количество последовательно включенных конденсаторов: M = [ Uтс где 1,1 — коэффициент, учитывающий номинальный разброс; Uкн 1,15 – коэффициент, учитывающий увеличение напряжения на КБ от индуктивности защитного реактора; 1,15 — коэффициент, учитывающий дополнительный нагрев конденсаторов токами внешних гармоник и солнечной радиации; М = 27500 / 1050 × 1,53 = 40 шт; 9.7 Мощность одной последовательной цепи Q1уст количество параллельных ветвей в КБ: N = Qуст I плечо 50 60 75 125 N = 9112.85 / 2000 = 4,556 = 5 шт; N = 9112.85 / 2400 =3.797 = 4 шт; N = 9112.85 / 3000 =3.038 = 3 шт; N = 9112.85 / 5000 = 1.823 = 2 шт; N = 10302,84 / 2000 = 5.151 = 6 шт; N = 10302,84 / 2400 = 4.293 = 5 шт; N = 10302,84 / 3000 = 3.434 = 4 шт; N = 10302,84 / 5000 = 2.061 = 3 шт; 125 N = 2 шт. Для 1-ого плеча питания: КЭК — 1,05 -125 Для 2-ого плеча питания: КЭК — 1,05 -125 9.8 параметры КБ: Iкн Xкн ; Хкб Cкб I плечо Iкн Xкн мкФ; Xкб Cкб Ik Xкн мкФ; Xкб Скб 9.9 Индуктивность реактора: I плечо ; LP ; мГн; LРср ; ; LРср Lзр выбираем один реактор с L = 83мГн и положением ПБВ в 4 ступени: Гц; выбираем один реактор c L =99 мГн и положением ПБВ в 2 ступени: Гц; 9.10 параметры КУ: Xзр Хку ; ; Qуст I плечо Хзр Хку Iку Qп Qуст Хзр Хку Iку Qп Qуст 9.11 коэффициент использования КБ kq Iикб kи Uакб Uкб I плечо kq Iикб kи Uакб Uкб kq Iикб kи Uакб Uкб 9.12 увеличение напряжения в точках включения , Ом; Ом; DU = Iикб ΔU| ΔU|| Определение стоимости активной и реактивной энергии за год Wp cp Cp Wq cq Cq Стоимость реактивной энергии скомпенсированной с помощью установок компенсации: Сqк список ЛИТЕРАТУРЫ 1. Марквардт К.Г. «Электроснабжение электрифицированных ж.д.» М.: «Транспорт» 2. Справочник по электроснабжению железных дорог. М.: » Транспорт» 1980 г. 3. Справочник по электроснабжению железных дорог под редакцией Марквардта К.Г. 4. Задание на курсовой проект с методическими указаниями «Электроснабжение электрических железных дорог», Москва – 1990.
i
– среднее
ti
²
Iср
*t
Iсp
²*t
0
0
0
0
0
1,2
140
19600
168
23520
7,05
190
36100
1339,5
254505
3,35
250
62500
837,5
209375
13,4
305
93025
4087
1246535
25
6432
1733935
;
ti
²
Iср
×t
Iсp
²×t
0,6
140
19600
84
11760
17,4
180
32400
3132
563760
3,0
220
48400
660
145200
1,5
255
65025
382,5
97537
22,5
4258,5
818257,5
;
ti
²
Iср
×t
Iсp
²×t
11,3
30
900
339
10170
9,7
80
6400
776
62080
4,6
95
9025
437
41515
10,8
118
13924
1274,4
150379,2
12
130
16900
1560
202800
3,5
190
36100
665
126350
2
245
60025
490
120050
53,9
5541,4
713344,2
;
ti
²
Iср
×t
Iсp
²×t
15,70
160
25600
2512
401920
15,70
2512
401920
;
ti
²
Iср
×t
Iсp
²×t
1,20
285
81225
342
97470
1,10
280
78400
308
86240
6,80
300
90000
2040
612000
3,00
270
72900
810
218700
2,90
290
84100
841
243890
0,80
170
28900
136
23120
3,70
160
25600
592
94720
1,50
0
0
0
0
9,50
160
25600
1520
243200
1,20
180
32400
216
38880
1,90
230
52900
437
100510
2,85
260
67600
741
192660
2,90
230
52900
667
153410
8,20
200
40000
1640
328000
1,10
190
36100
209
39710
48,65
10499
2E+06
;
ti
²
Iср
×t
Iсp
²×t
7,5
160
25600
1200
192000
1,90
190
36100
361
68590
17,20
220
48400
3784
832480
2,40
190
36100
456
86640
4,70
160
25600
752
120320
1,00
180
32400
180
32400
0,90
220
48400
198
43560
9,70
240
57600
2328
558720
45,3
9259
2E+06
;
Iсp
, А
Iэ
², А²
Iэ
, А
Kэ
13028,9
114,1
1,19
61,49
0,64
48,40
6094,6
78,1
1,12
34,68
0,50
29,00
45359,5
213,0
1,01
30,40
0,14
16,3
25600,0
160,0
1,00
0,00
0,00
15,70
Iсp
, А
Iэ
², А²
Iэ
, А
Kэ
215,8
50822,4
225,4
1,04
65,21
0,30
48,65
47,15
204,4
42708,8
206,7
1,01
30,49
0,15
45,30
45,30
=t/θo — наибольшее число поездов в межподстанционной зоне;
= 100 паp/сут;
= 8 мин;
= 1440 / θo
= 180 пар поездов;
Iф
, А
Iфэ
², А²
Iфэ
, А
Kэ
141863
376,6
1,16
188,82
0,58
6,1
28572
169,0
1,21
94,87
0,68
3,6
85486
292,4
1,25
175,03
0,75
2,0
48461
220,1
1,24
129,80
0,73
2,0
= N0
×0.9= 180×0.9 = 162 пары поездов.
Iф
, А
Iфэ
², А²
Iфэ
, А
Kэ
313174
559,6
1,06
185,60
0,35
6,1
58662
242,2
1,07
85,50
0,38
3,6
156853
396,0
1,04
113,50
0,30
2,0
89088
298,5
1,04
78,38
0,27
2,0
= N0
×1= 180×1 = 180 пар поездов.
Iф
, А
Iфэ
², А²
Iфэ
, А
Kэ
374860
612,3
1,04
175,37
0,30
6,1
69171
263,0
1,04
75,98
0,30
3,6
180206
424,5
1,01
49,64
0,12
2,0
102400
320,0
1,00
0,00
0,00
2,0
Плечи
Iсp
, А
Iэ
² ,А²
Iэ
, А
Kэ
412,0
214396
463
1,12
211,3
0,51
465,8
264454
514
1,10
217,9
0,47
= 0,9
667,4
487228
698
1,05
204,3
0,31
754,6
588447
767
1,02
137,9
0,18
=1
741,6
586498
766
1,03
191,1
0,26
838,4
705378
840
1,00
49,6
0,06
; (16)
; (17)
; (18)
; (19)
;
;
; А2
;
;
;
; А2
;
;
; А2
;
по каталогу в качестве базовой Sн
= 2 x 40 =80 МВА;
= 0.97 – коэффициент участия в максимуме районной нагрузки.
– мощность районных потребителей; согласно исходным данным:
= 10 МВА;
определим соответствующий ей номинальный ток для двух трансформаторов:
– напряжение на шинах тяговой подстанции Uш
= 27.5 кВ;
— эквивалентный ток обмотки по нагреву масла для заданного режима, А; Используя выражение (22) получим:
— эквивалентный ток обмотки по нагреву масла для режима сгущения, А;
³ 1,5 , то надо выбирать следующий по шкале более мощный трансформатор.
— температура наиболее нагретой точки, при которой срок службы трансформатора условно принят за единицу,
=980
С;
— температура окружающей среды в период восстановления нормального движения, задается в зависимости от района; согласно исходным данным Qохлс
= =300
С
— среднее время хода поезда основного типа по фидерной зоне; to
= (48.65+45.3)/120 = 0.78 часа;
<1 , то по полученной интенсивности износа F1
пересчёт номинального тока производить не надо.
>1, то полученной интенсивности износа F1
производится пересчёт номинального тока, то есть находится такой ток, при котором относительная интенсивность износа будет номинальной по формуле:
– число суток с предоставлением окон за год;
=суток.
(в предположении, что Износ изоляции обмотки происходит только в период восстановления нормального движения после окна) занижает мощность не более чем на 8%, поэтому необходимая расчетная мощность лежит в пределах [Smin
и Smax
], которые определяются по формулам:
= Kу
×( 3× I0
ном
×Uш
+ Sp.p
асч
); (31)
= Kу
×( 3×K×I0
ном
×Uш
+ Sp.p
асч
); (32)
= 0,97 ; K = 1,08.
= Kу
×( 3× I0ном
×Uш
+ Sp.pасч
) = 0.97×(3×878.8×27.5 + 10×103
) = 80025.97 кВА;
= Kу
×( 3×K×I0ном
×Uш
+ Sp.pасч
) = 0.97×(3×878.8×1.08×27.5 + 10×103
) = 85652.05 кВА;
– число суток в весенне-летний период;
– число суток с предоставлением окон;
– эквивалентная температура в весенне-летний период; согласно исходным данным Qохл0
= 200
С;
= Kу
×( 3× Ioном
×Uш
+ Sp.pасч
) = 0.97×(3×286.8×27.5 + 10×103
) = 32649.9 кВА :
= 3× Ioном
×Uш
= 3×286.8×27.5 = 23659.7 кВА
С <95 0
С;
С; (38)
С; (39)
– ток, соответствующий мощности, которая может быть использована для тяги при работе одного трансформатора, который определяется по формуле (21),
40 МВА.
С £ 950
С ;
С £ 1400
С;
, (40)
– годовые удельные потери в проводах контактной сети рассматриваемой фидерной зоны, кВт×ч/Ом×год
= Iср
× Uш
× t × Np
; (41)
= N / kнд
= 100 / 1,15 = 87 пар/сутки;
= 25 кВ;
= 47.15/60 = 0.79 часа;
= 45.3/60 = 0.76 часа;
– средний ток поезда, А.
= Iср
× Uш
× t × Np
=215.8×25×0.79×87=370798.35 кВт×ч;
= Iср
× Uш
× t × Np
= 204.4×25×0.76×87=337873.2 кВт×ч.
= 8 мин = 8/60 = 0.13 часа.
= 48.65/60 = 0.811 часа; tт.нечет
= 45.3/60 = 0.76 часа;
.
.
, (43)
= Wтч
+ Wтнч
; (44)
= Wтч
+ Wтнч
=370798.35 + 337873.2 = 708671.55 кВт×ч.
.
= 263,0 А< 1230 А; Iфэ2
= 612,3 А< 1230 A;
= 424,5 А< 1230 А; Iфэ4
= 320,0 А < 1230 A;
= Вo
× l × ra
; (45)
— активное сопротивление подвески; для подвески М120 + МФ100 + А185;
=0,055 Ом/км;
= 451664.59 × 40 × 0,055 = 993662.1 кВт×ч/год;
= 382042.92 × 40 × 0,055 = 840494.42 кВт×ч/год;
= 1443932.86 × 40 × 0,094 / 2 = 1588326.15 кВт×ч/год;
= 993662.1 +840494.42 = 1834156.52 кВт×ч/год;
= Е × K + DА; (46)
+ Еa
+ Еo
;
= 0,12 — нормативный коэффициент эффективности;
= 0,046 — амортизационные отчисления на контактную сеть;
= 0,03 — затраты на обслуживание;
= 0,055 — амортизационные отчисления на пост секционирования;
× Kэ
, руб; (47)
= 0,09 руб/кВт×ч — стоимость электроэнергии;
= ( Ен
+ Еак.с.
+ Еo
) × Kкс
+ DА, руб;
= 13000 × 40 = 520000 руб;
= 1834156.52 × 0,09 = 165074,09 руб;
= (0,12 + 0,046 + 0,03) × 520000 + 165074.09 = 266994.09 руб;
= ( Ен
+ Еак.с.
+ Еo
) × Kк.с.
+ ( Ен
+ Еап.с.
+ Е0
) × Kп.с.
+ DА, руб;
= 22000 руб;
= 1588326.15 × 0,09 =142949.35 руб;
=(0,12+0,046+0,03)×520000+(0,12+0,055+0,03)×22000+142949.35 =249379.35 руб; Спр.узл
= 249379.35 руб < Спр.разд
= 266994.09 руб;
=22000 руб > Кразд
=0 руб;
6.1 Расчет среднего уровня напряжения в контактной сети до расчетного поезда на условном лимитирующем перегоне
= DUk
+ DUp
; (49)
— потери напряжения в контактной сети до расчетного поезда;
— то же в рельсах;
=0,136 Ом/км — приведённое сопротивление контактной сети для подвески М120 + МФ100 + А185.
= I × t × U — расход энергии на движение расчетного поезда типа g, на к-ом перегоне в двигательном режиме;
— время потребления тока поезда типа g, на к-ом перегоне в двигательном режиме;
= I × t × U — расход энергии поездами по всей зоне;
— количество поездов в зоне;
I
и Wg
II
-расход энергии на движение поездов типа g по фидерной зоне, по путям I и II;
= II(II)
× tI(II)
× U кВт×ч;
= 0,9 × kэф
× хвт
×,В (52)
= 0,97 — коэффициент эффективности, вводимый для перехода от вы прямленных токов к действующим.
-сопротивление трансформатора и внешней сети, равное:
– номинальная мощность подстанции, кВ×А;
=10.5 % -напряжение короткого замыкания трансформатора;
– мощность короткого замыкания на вводах тяговой подстанции, кВ×А;
.
— средний выпрямленный ток подстанции при максимальных размерах движения, равный:
, Ib
max
— нагрузки плеч определяемые при N = No
.
— DUni
, кВ; (55)
= 0,76 часа ; tkg
= 0,13 часа ;
= 0,79 часа ; m = 6 поездов ;
= 230 × 0,13 × 25 = 747.5 кВт×ч;
I
= 204.4 × 0,76 × 25 = 3883.6 кВт×ч;
II
= 215.8 × 0,79 × 25 = 4262.05 кВт×ч;
= 25.5 км; l2
= 7.5 км; l0к
= 29 км; lк
= 2.33 км.
= DUk
+ DUp
= 737.72 + 1546.88= 2284.6 В;
= 0,9 × 0.97 × 1.18 ×=971.12, В
— DUni
, кВ = 0,9×27500 – 2284.6 – 971.12 = 21494.28 В.
/3
= DUk
+ DUp
; (56)
= 27500 — 1,11 × (DUбу
+ DUni
); (57)
³21 кВ;
= 0,76 часа ; tkg
= 0,043 часа ;
= 0,79 часа ; m = 6 поездов ;
= 230 × 0,04 × 25 = 230 кВт×ч;
I
= 204.4 × 0,76 × 25 = 3883.6 кВт×ч;
II
= 215.8 × 0,79 × 25 = 4262.05 кВт×ч;
= DUk
+ DUp
= 800.91+1762 = 2562.91 В;
= 0,9 × 0.97 × 1.18 ×=971.12, В
= 27500 — 1,11 × (DUбу
+ DUni
) = 27500 – 1.11×(2562.91+971.12) = 23577.23 В;
> 21кВ
=12 Ом — приведённое сопротивление ЭПС;
, приведённый к выпрямленному напряжению
= 230 A; tэ
= 8 мин;
= 8 мин; Zэ
= 12 мин;
= 25 кВ – номинальное напряжение контактной сети;
— расстояние от тяговой подстанции до места короткого замыкания, км; x и ra
— индуктивное и активное сопротивления одного километра тяговой сети, Ом/км;
max
= Iтр
+ (nф
1
— 1) × I1
, А; (61)
— ток трогания по тяговым расчётам, А;
= Iтр
+ (nф1
— 1)× + nф2
×, А; (62)
, nф2
— максимальное число ЭПС, которое может находится в фидерной зоне четного и нечетного путей.
, I2
— средние значения разложенных поездных токов.
= 340 А; кз
=1,2;
= 0,85; кч
=1,5;
= 0,094 + j×0,287 Oм/км;
= 340 + (6 — 1) × 215.8 = 1419 А;
= 340 + (6 — 1) × 204.4 = 1362 А;
min
=1473.29 А< кч
×Iуст
= 3004.94 А условие не выполняется
=(0,094+j×0,287) Ом/км;
= 340 + (6 — 1) ×+ 6 ×= 1491.7 А;
= 340 + (6 — 1) ×+ 6 ×= 1497.2 А;
min
=2279.1 А< кч
×Iуст
= 3170.54 А; условие не выполняется
= kотс
× Zвхi
, Ом; (66)
= 0,8 — коэффициент отстройки
— входные сопротивления в конце защищаемой зоны, Ом;
= Z1
× l ,Ом; (67)
— сопротивление одного пути двухпутного участка.
проверяется на селективность по отношению к токам нагрузки:
— минимальное сопротивление нагрузки, Ом;
= 0,9; кн
= 1,2; Upmin
= 25 кВ;
— минимальное напряжение при коротком замыкании в конце линии;
= 0,9 × 27500 = 24750 В;
— сопротивление двухпутного участка при соединении контактных подвесок, Ом;
= кн
× Iкзmax
; (72)
— максимальный ток короткого замыкания, протекающий через фидер;
= 1,05 × 27500 = 28875 В;
= kч
× Zкзmax
; (75)
— максимальное сопротивление при коротком замыкании на шинах смежной подстанции;
= 2 × (Z2
× lca
+ Z1
× lсв
), Ом; (76)
=Z2
== 0.302 Ом;
= 0,302 × 20 = 6,04 Ом;
= 0,8 × 6,04 = 4,832 Ом;
= 25000 / 1497.2 = 16,7 Ом;
= 6727.72 / 1,2 = 5606.43 В;
= кн
× Iкзmax
= 1.2 × 2599 = 3118.8 А ;
= 2 × (0,302 × 20 + 0,302 × 20) = 24.16 Ом;
= 24,16 × 1,5 = 36,24 Ом;
= 27,5 × 412 × sin(37º) = 6818.56 кВ×Ар;
= 27,5 × 465.8 ×sin (37º) = 7708.95 кВ×Ар;
= 27,5 × 412 × cos(37º) = 9048.54 кВт;
= 27,5 × 465.8 × cos(37º) = 10230.12 кВт;
) = 0,25
= tg(φэ
)×PкВ×Ар
= 0,25 × 9048.54 = 2262.135 кВ×Ар;
= 0,25 × 10230.12 = 2557.53 кВ×Ар;
= Q — Qэ
= 6818.56 – 2262.135 = 4556.425 кВ×Ар
= 7708.95 – 2557.53 = 5151.42 кВ×Ар;
= Qку
/ kg
;
= 0,5;
= 2 × 4556.425 = 9112.85 кВ×Ар;
= 2 × 5151.42 = 10302.84 кВ×Ар;
/ Uкн
] × 1,1 × 1,05 × 1,15 × 1,15
— номинальное напряжение 1-го конденсатора = 1,05 кВ;
= 40 × (50 , 60 , 75 , 125) = 2000 , 2400 , 3000 , 5000 кВ×Ар;
/ ( Qкн
× M )
II плечо
50 N = 5 шт.
= Qкн
/ Uкн
;
= Uкн
² / Qкн
;
= Хкн
× М / N;
= Скн × N / M;
II плечо
= 125000 / 1050 = 119,0 A;
=1050² / 125000 = 8,82 Oм;
= 8,82 × 40 / 2 = 176,40 Ом;
= 360,9 × 2 / 40 = 18,0 мкФ;
н
= 75000 / 1050 = 71.43 A;
=1050² / 75000 = 14.7 Oм;
= 14.7 × 40 / 4 = 147 Ом;
= 147 × 4 / 40 = 14.7 мкФ;
II плечо
ср
= (LP1
+ LP2
) / 2 ;
= (83,3+ 77.2) / 2 = 80,25 мГн;
= (101.962+ 94.549) / 2 = 98.255 мГн;
— 1 — 107 2 — 99 3 — 91 4 — 83 5 — 75
= 2×p×f × Lзр
= Хкб
— Хзр
;
= Qкб
× М × N;
II плечо
= 2×π × 50 × 83 / 1000 = 26.08 Ом;
= 176,40 — 26,08 = 150,32 Ом;
= 27500 / 150,32 = 182.94 А;
= 27,5² / 150,32 = 5.03 МВ×Ар;
= 125 × 40 × 2 / 1000=10 МВ×Ар;
= 2×π × 50 × 99 / 1000 = 31.1 Ом;
= 147 – 31.1 = 115.9 Ом;
= 27500 / 115.9 = 237.27 А;
= 27,5² / 115,9 = 6.53 МВ×Ар;
= 50 × 40 × 5 / 1000 =10 МВ×Ар;
= Qп
/ Qуст
= Iкб
× N
= Iикб
/ Iку
= M × Uкн
= Iикб
× Хкб
II плечо
= 5.03 / 10 = 0.503;
= 119.0 × 2 = 238 А;
= 238 / 182.94 = 1.3;
= 40 × 1050 = 42000 В;
= 238 × 176.40 = 41983.2 В;
= 6.53 / 10 = 0.653;
= 71,43 × 5 = 357.15 А;
= 357.15 / 237.27 = 1.5;
= 40 × 1050 = 42000 В;
= 357.15 × 147 = 52501.05 В;
×Хсум
= 238 × 1.15 = 273.7 В;
= 357.15 × 1.15 = 410.72 В;
=(9048.5 + 10230.12) × 8760 = 168 880 711.2 кВт×ч;
= 0.09 руб/кВт×ч;
= 168 880 711.2 × 0.95 × 0.09 = 14 439 300.81 руб;
= (6818.56 + 7708.95) × 8760 = 127 260 900.0 кВАр;
= 0.09 × 0.1 = 0.009 руб/кВт×ч
= 127 260 900.0 × 0.95 × 0.009 = 1 571 382.5 руб
= (4556.425 + 5151.42 ) × 0,95 × 8760 × 0,009 = 727 098.17 руб