Учебная работа. Реферат: Метод моментов в определении ширины линии магнитного резонанса

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Контрольные рефераты

Учебная работа. Реферат: Метод моментов в определении ширины линии магнитного резонанса

Оглавление

А.Введение…………………………………………………………………………..2

§1.Локальное поле…………………………………………………………………2

§2.Общая теория магнитного поглощения………………………………………2

Б. Уширение, вызванное взаимодействием между одинаковыми спинами…….5

§3.Диполь-дипольное взаимодействие……………………………………………5

§4.Определение моментов…………………………………………………………6

§5.метод вычисления моментов………………………………………………….7

В. Кинетические свойства….………………………………………………………10

§6.Кинетическое уравнение………………………………………………………10

§7.Электропроводность……………………………………………………………11

А. ВВЕДЕНИЕ

Линия магнитного резонансного поглощения системы спинов, находящихся в неоднородном магнитном поле, обладает некоторой шириной, обусловленной разбросом ларморовских частот. Аналогичное уширение может иметь место в неидеальных кристаллах благодаря взаимодействию ядерных квадрупольных моментов с малыми градиентами электрического поля, значения которых изменяются от одного узла решетки к другому случайным образом. В обоих случаях ширина линии обусловливается различием резонансных частот отдельных спинов, а не взаимодействиями между ними. Соответствующее уширение линии называется неоднородным уширением.

Положение существенно изменяется, если уширение линии обусловлено взаимодействием между соседними спинами. Эта задача и рассмат­ривается в настоящей работе.

§ 1. ЛОКАЛЬНОЕ ПОЛЕ

Энергия взаимодействия между двумя ядерными спинами зависит от величины и ориентации их магнитных моментов, а также от длины и направления вектора, описывающего их относительное расположение. Влияние такого взаимодействия на ширину линии поглощения сущест­венным образом зависит от того, зафиксирован ли этот вектор в простран­стве или его положение быстро меняется со временем вследствие относи­тельного движения ядер.

Последний случай, как правило, встречающийся в жидкостях и га­зах, будет рассмотрен позднее. В этой главе мы ограничимся случаем жест­кой решетки, в которой ядра можно считать неподвижными. Такое при­ближение разумно для многих твердых тел при комнатной температуре, в частности для ионных кристаллов.

Энергия диполь-дипольного взаимодействия двух магнитных моментов m1
=g1
ћI1
и m2
=g2
ћI2
описывается хорошо известным выражением

(1)

которое можно переписать в виде

W12
= – m2
∙H12
= – g2
ћI2
∙H12
,

где H12

локальное поле, созданное первым спином в месте расположе­ния второго спина. (Введение в рассмотрение понятия локального поля очень удобно.) Поскольку ядерные магнитные моменты имеют порядок 10-3
магнетона Бора, или 10-23
CGS, а между ядерные расстояния порядка нескольких ангстрем, то локальные поля в жесткой решетке в общем случае имеют порядок нескольких эрстед.

Взаимодействие двух одинаковых диполей в сильном поле Н0
может быть описано с классической точки зрения следующим образом. Первый диполь m1
прецессирует с ларморовской частотой вокруг поля Н0
и, следова­тельно, обладает постоянной составляющей вдоль этого поля и составляю­щей, которая вращается в плоскости, перпендикулярной полю. Постоян­ная составляющая m1
создает в месте расположения диполя m2
слабое постоянное поле, ориентация которого относительно Н0
зависит от взаим­ного расположения спинов. Если поле Н0
сильное, то на него заметно влияет только параллельная или антипараллельная ему составляющая слабого поля. Так как каждый спин в решетке имеет несколько соседей с различными относительными положениями и ориентациями, постоянная составляющая локального поля имеет разные значения в различных местах, что приводит к разбросу ларморовских частот и уширению линии.

Вращающаяся составляющая m1
создает в месте расположения m2
локальное магнитное поле, вращающееся с ларморовской частотой m1
,
которая совпадает с ларморовской частотой для m2
.
В свою очередь она имеет составляющую в плоскости, перпендикулярной Н0
и, следовательно, может заметно изменять ориентацию m2
благодаря явлению резонанса. соответствующая ширина линии должна быть порядка величины вращающегося поля. В рассматри­ваемом случае оно того же порядка величины, что и локальное постоянное поле и, следовательно, вносит в уширение вклад сравнимой величины.

Необходимо отчетливо понимать, что механизмы, обусловливающие эти вклады в ширину линии, в действительности различны. Если два спина не являются одинаковыми, то вращающееся поле, созданное m1
, не является резонансным для m2
и оказывает на него пренебрежимо малое влияние, в то время как постоянное поле, созданное m1
, в месте располо­жения m2
является столь же эффективным, как и в случае одинаковых спи­нов. При прочих равных условиях одинаковые соседние спины оказывают более сильное влияние на уширение резонансной линии, чем неодина­ковые.

§ 2. ОБЩАЯ ТЕОРИЯ МАГНИТНОГО ПОГЛОЩЕНИЯ

Для количественного описания формы линии, обусловленной дипольным уширением, необходимо развить формализм.

Когда все спины образца связаны друг с другом дипольным взаимо­действием, неверным. Этот вывод следует хотя бы из того факта, что вращающееся локальное поле, созданное одним спином, приводит к переориентации его соседей. поэтому образец при­ходится рассматривать как единую большую систему спинов, а переходы, вызванные радиочастотным полем, — как переходы между различными энергетическими уровнями этой системы. Соответственно изменяется и ста­тистическое описание с использованием матрицы плотности. вместо ста­тистического ансамбля спинов, описываемых (2I
+1) ´ (2I
+1) матри­цей плотности, весь
образец, содержащий N спинов, теперь становится одним элементом статистического ансамбля и описывается (2I
+1)N
´ (2I
+1)N
матрицей плотности. Такое видоизменение никоим образом не ограничивается ядерным магнетизмом, напротив, оно весьма часто встре­чается в статистической физике» а именно всякий раз, когда переходят от описания систем со слабыми взаимодействиями, например, таких, как молекулы газа при низком давлении, к описанию сильно взаимодействую­щих систем, таких, как атомы Кристалла. первый подход соответствует методу Максвелла – Больцмана, а второй — методу Гиббса.

Стационарное состояние, следуя методу Гиббса, можно описать сле­дующим образом. Если к системе спинов приложено линейно поляризован­ное вдоль оси Ох
радиочастотное поле Н1

cos wt
, то при стационарных условиях система приобретает намагниченность, составляющая которой вдоль этой же оси равна

Мх

= H1

{c’ (w) cos wt
+c» (w) sin wt
}.
(la)

Условие линейности или отсутствия насыщения предполагает, что c’ и c» не зависят от H0
. c’ и c» можно измерить отдельно, а c» пропорционально скорости поглощения радиочастотной энергии образцом.

Выведем общую формулу для c» (w). Выше было показано, что в линей­ной теории резонанса между c’ (w) и c» (w) существуют независимо от при­роды рассматриваемой системы общие соотношения (соотношения Крамерса – Кронига), позволяющие вычислить одну из этих величин, когда для всех значений частоты известна другая.

Ниже, чтобы избежать путаницы, мы будем обозначать через М макро­скопическое M

соответ­ствующий квантовомеханический оператор. между ними имеет место соотношение

М = <M
> = Sp {rM
}, (2)

где r – статистический оператор, или матрица плотности, описывающая систему спинов. Пусть ħH

полный гамильтониан системы в отсутствие внешнего радиочастотного поля. Если до приложения радиочастотного поля система находится в тепловом равновесии при температуре Т,
то ее статистический оператор определяется выражением

(3)

которое просто означает, что статистическое поведение системы можно описать, если ее энергетическим уровням ħEn

приписать населенности, пропорциональные exp(—ħ
En
/

kT).

При наличии радиочастотного поля уравнение движения для r имеет вид


(4)

где V – объем образца. Чтобы решить (4) относительно r,
сделаем подстановку

r* = ei
H

t

r e – i
H

t

, (5)

которая преобразует (4) в уравнение

.
(6)

предположим, что радиочастотное поле было включено в момент, когда образец находился в тепловом равновесии и

r (–¥) = r = r* (–¥).

В момент t
решение (6) в линейном приближении относительно Н1

имеет вид

( 7)

поэтому, возвращаясь к r [см. (5)], находим

(8)

Если предположить, что до включения радиочастотного доля намагни­ченность вдоль оси x
была равна нулю, т. е.

Мх

(–¥) = Sp {r0
M
x
} =0,

то

(9)

и, согласно определению (1 а),

(10)

Учтем, что температура обычно достаточно высока для того, чтобы для рав­новесной матрицы плотности (3) можно было использовать линейное разложение

где e
– единичный оператор; тогда восприимчивость c²(w) становится равной

(11)

откуда, интегрируя по частям, получаем

(12)

Выражение (12) можно преобразовать к более компактной форме двумя способами.

В первом способе, вводя в рассмотрение оператор Гейзенберга

M
x

(t) = e i

H

t

M
x

e – i

H

t

, (12a)

можно переписать (12) в виде

(13)

где

G(t) = Sp{M
x
(t) M
x
}, (13a)

Функцию G(t) назовем функцией корреляции, или функцией релаксации намагниченности системы.

Во втором способе выражение (12) можно переписать в виде

Отсюда после применения хорошо известной формулы для d-функции

получаем

(14)

где суммирование S¢ производится только по тем энергетическим уровням, для которых | En

En’

| = ħw. Обычно, вводя в рассмотрение вероят­ности переходов, выражение (14) используют как отправную точку для вывода (13) с помощью интегрального представления d-функции. Из равенства (14) в общем виде следует, что функция формы f
(w), определяющая форму линии, пропорциональна сумме S¢ |< п
| M
x

| n

>|2

.
Точная зависимость этого выражения от co вытекает из условия, ограничи­вающего суммирование только по тем уровням, для которых | En

En’

| = ħw. Формулы (13) и (14) являются весьма общими и справедливы в случае, когда спектр магнитного поглощения системы содержит одну или несколько острых резонансных линий, т. е. в случае ядерного маг­нитного резонанса. Математически это условие может быть сформулиро­вано следующим образом.

Гамильтониан ħH
системы представляет собой сумму главной части ħH0

и малой возмущающей части, которую удобно записать в виде ħeH1

, где e — параметр малости возмущения. В отсутствие H1

спектр поглоще­ния системы состоит из одной или нескольких бесконечно острых линий c частотами wa
, a восприимчивость c»(w) может быть записана в форме

c¢¢(w) = S Aa
d(w-wa
); (15)

при этом функция релаксации G
(
t
),
пропорциональная фурье-преобразованию c¢¢(w), имеет вид


(15a)

Если существует возмущение ħeH1

, то функция релаксации принимает вид G(e, t)
и может быть в принципе вычислена вплоть до любого порядка по e методом возмущений; восприимчивость c¢¢(w, e) получается как фурье-преобразование G(e, t).

Прежде чем производить детальный расчет, кратко рассмотрим соот­ношение между c¢¢(w) и поведением намагниченности после окончания действия радиочастотного импульса. Хорошо известно и достаточно оче­видно, что для линейных систем стационарная реакция на возбуждение coswt
представляется фурье-преобразованием нестационарной реакции на бесконечно острый импульс d(t).
Однако на практике для аппроксима­ции такого импульса к системе спинов необходимо приложить кратковре­менно действующее магнитное поле, значительно большее постоянного поля Но
.

Для системы взаимодействующих ядерных спинов в магнитном поле, характеризующейся острой резонансной линией на частоте w0
, действие бесконечно острого импульса постоянного поля можно аппроксимировать радиочастотным импульсом частоты w = w0
со значительно большей длительностью t и меньшей амплитудой H
1

.
Поскольку в системе координат, вращающейся с частотой w, отлично от нуля только постоянное поле H
1

,
то для аппроксимации бесконечно острого импульса конечной амплитуды достаточно того, чтобы H
1

было значительно больше локального поля; последнее представляет собой гораздо менее жесткое условие.

Б. УШИРЕНИЕ, ВЫЗВАННОЕ ВЗАИМОДЕЙСТВИЕМ
между ОДИНАКОВЫМИ СПИНАМИ

§ 3. ДИПОЛЬ-ДИПОЛЬНОЕ ВЗАИМОДЕЙСТВИЕ

Полный гамильтониан системы одинаковых взаимодействующих спи­нов в сильном внешнем поле может быть записан в виде

ħH
= ħ(H
0

+ H
1

). (16)

основной гамильтониан

ħH
0

= Sj
Zj
= – għH
0

Sj
Ij
z
(16a)

описывает энергетические уровни, определяемые выражением ħE0
M
= – għН0

M,
где M
собственное

Iz
= Sj
Ij
z

Гамильтониан возмущения ħ H1

,
ответственный за уширение, имеет вид

(16б)

прежде всего, рассмотрим несколько подробнее взаимодействие между двумя спинами, которые будем обозначать для краткости i и i’. Пусть q и j — полярные координаты вектора r
,
описывающего их взаимное положение, причем ось z
направлена параллельно внешнему полю. Тогда Wii

можно записать в виде

Wii


= {i
×i’
— 3[iz

cos q + sin q (ix

cos j + iy

sin j)]x[i’z

cos q + sin q (i’x

cos y + +i’y

sinj)]}g2
ħ2
/r3
= {i
×i’
— 3[iz

cos q + sin q (i+

e— i

j
+ i-

ei

j
)/2]x[i’z

cos q + sin q (i+

e— i

j
+ + i-

ei

j
)/2)]}g2
ħ2
/r3
= (A+B+C+D+E+F)g2
ħ2
/r3
, (17)

где

A = i’z
iz
(l – 3cos2
q),

B = – (l – 3cos2
q) (i+
i’–
+ i –
i’+
) = (l – 3cos2
q)(iz
i’z
i
×i’
)/2,

C = – 3sinq cosq e— i

j
(iz
i’+
+ i +
i’z
)/2, (18)

D = С* = – 3sinq cosq e i

j
(iz
i’–
+ i –
i’z
)/2,

E = – 3sin2
q e-2 i

j
i+
i’+
/4,

F = E* = – 3sin2
q e-2 i

j
i –
i’–
/4,.

Запись W
в такой форме вызвана следующими причинами. Согласно формуле (14),

c¢¢(w) ~ S¢ |< п
| M
x

| n

>|2

.

Это приводит к необходимости определить изменение в положении энер­гетических уровней, отвечающих ħH0

,
обусловленное наличием ħH1

.
Операторы А, В, С,
D, E, F
дают качественно различным вклады в это изменение. Упомянутые операторы, действуя на состояние невозмущенного гамильтониана, характеризующееся значениями iz

, i
z
=т’,

при­водят к следующему изменению этого состояния:

(19)

Рассмотрим теперь энергетический уровень ħE0
M
= – għH0

M,
соот­ветствующий гамильтониану (16a). Этот уровень сильно вырожден, так как существует много способов, которыми можно скомбинировать отдельные значения Ij
z
=
mj

,
чтобы получить величину M
=
S
mj

. Таким образом, уровень ħE0
M
соответствует вырожденному множеству состояний |М>, причем вырождение снимается (по крайней мере частично) возмущением, описываемым гамильтонианом ħH1

, который расщепляет уровень ħE0
M
на много подуровней. Согласно первому приближению тео­рии возмущений, вклад первого порядка в расщепление уровня ħE0
M
дают лишь те члены гамильтониана возмущения, которые обладают отлич­ными от нуля матричными элементами внутри множества |М>,
т. е. те, которые, действуя на состояние |М>, не вызывают изменения величины М.
Обращаясь к формуле (19), мы видим, что только те части W,
которые отвечают операторам А
и В,
удовлетворяют этому условию и должны быть сохранены для вычисления энергетических уровней ħH
методом возму­щений.

Член А
имеет тот же вид, что и выражение для взаимодействия двух классических диполей и описывает упомянутое в разделе А взаимодействие одного диполя со статическим локальным полем, создаваемым другим дипо­лем. Член В
описывает взаимодействие, при котором возможно одновре­менное переворачивание двух соседних спинов в противоположных направ­лениях. Эта часть гамильтониана, названная «переворачивающей» частью, соответствует описанному в разделе А резонансному действию враща­ющегося локального поля. влияние такого члена, как С,
заключается в примешивании к состоянию |М> с невозмущенной энергией ħE0
M
= – għH0

M малой доли состояния |М
1>. Таким образом, точное соб­ственное состояние ħH0

следует представить в виде

| М > + a | М – 1 > + …,

где a — малая величина. Взаимодействие системы спинов с радиочастот­ным полем, приложенным вдоль оси ох,
пропорционально Ix
= S
Ij
x
и может индуцировать только переходы с DМ = ± 1. Слабые переходы знежду состоянием, скажем, |M – 2> + малая примесь, энергия которого приблизительно равна – għH0

(M —2), и состоянием | М > + a | М – 1 > + … становятся возможными с вероятностью порядка a2
. Разность энергии между этими состояниями приблизительно равна 2ħw0
.
следовательно, таким переходам на частоте 2w0
соответствует очень слабая линия, кото­рую обычно трудно наблюдать экспериментально. Легко видеть, что линии сравнимых интенсивностей появляются на частотах 0 и 3w0
.

Доказательство справедливости сохранения в гамильтониане ħH1

только членов А
и В,
которые коммутируют с H0

обычно называются адиабатической или секулярной частью ħH1

и которые впредь будут обо­значаться как ħH’0

, может быть также дано следующим способом. Так как c¢¢(w) пропорционально фурье-преобразованию G(t)=Sp{M
x

(t)
M
x

},
то оно может быть вычислено, если известно M
x

(t)
=
е
i

H

t

M
x

е–

i

H

t

.
В этом случае M
x

(t)
удовлетворяет уравнению

(1/i) d
M
/dt =
[H
0

+H
1

, M
x

(t)
]. (20)

§ 4. ОПРЕДЕЛЕНИЕ МОМЕНТОВ

Для резонансной кривой, описываемой нормированной функцией формы f(w) с максимумом на частоте w0
, n-й момент Mn
относительно w0
опреде­ляется выражением

Мn
= ∫ (w – w0
)n
f(w)dw.

Если f(w) симметрична относительно w0
, то все нечетные моменты равны нулю. знание моментов дает некоторую информацию о форме резонансной кривой и, в частности, о скорости, с которой она спадает до нуля на крыльях вдали от w0
.

Достоинство метода моментов состоит в том, что моменты могут быть вычислены на основании общих принципов без определения собственных состояний общего гамильтониана ħH
. Прежде чем останавливаться на вычислении моментов, рассмотрим два примера резонансных кривых разном формы. Гауссова кривая описывается нормированной функцией

(24)

для которой легко найти

М2
= D2
, M4
=3D4
,

М2n
= 1, 3, 5, …, (2n – 1) D2n
,

причем нечетные моменты равны нулю. Полуширина на половине высоты d определяемая соотношением f(w0
+ d) = f(w0
)/2, или ехр( – d2
/2D2
) = 1/2 оказывается равной

Отсюда видно, что линии d.

Другой формой линии, которая часто наблюдается в магнитном резо­нансе, является лоренцева форма, опи­сываемая нормированной функцией

(25)

где d — полуширина на половине высоты.

В этом случае ни второй, ни более высокие моменты не могут быть определены, так как соответствующие интегралы расходятся. Однако иногда теория дает конечные значения для второго и четвертого моментов линий, которые в экспериментально наблюдаемой области имеют лоренцеву форму. В соответствии с конечными значениями M2
и М4
далеко на крыльях линии, где невозможно произвести достаточно точные измерения погло­щения вследствие его малой величины, линия должна изменяться более быстро, чем это следует из лоренцевой формы.

Грубая, но удобная пробная модель состоит в описании кривой по формуле (25) внутри интервала |w – w0
|£a, где a>>d и в пред­положении о том, что она равна нулю вне этого интервала. Тогда, прене­брегая членами порядка d/a, найдем

M2
= D2
= 2ad /p, M4
= 2a3
d /(3p), (IV.25a)

откуда, если известны M2
и M4
можно вычислить d и a. поскольку

M4
/( M2
)2
= pa /6d,

упомянутая модель может быть использована лишь, когда теоретическое отношение M4
/( M2
)2
оказывается большим числом., В этом случае

(IV.25б)

Ширина на половине высоты значительно меньше, чем среднеквадратичная ширина. С другой стороны, предположение о гауссовой форме линии может быть разумным всякий раз, когда отношение M4
/( M2
)2
порядка 3.

§ 5. метод ВЫЧИСЛЕНИЯ МОМЕНТОВ

Основной недостаток метода моментов состоит в том, что важный вклад в значение момента (вклад тем существеннее, чем выше момент) дают крылья кривой, которые на практике не наблюдаются. необходимо из вычисленных моментов линии магнитного резонанса с центром на ларморовской частоте w =w0
исключить вклады от сопутствующих линий на частотах w = 0, 2w0
, 3w0
о которых упоминалось ранее. легко видеть, что, несмотря на их малую интенсивность (благодаря удаленности от центральной частоты w0
) вклад во второй момент сравним с вкладом от главной линии и тем больше, чем выше порядок момента. Для исключения вкладов от них следует рассматри­вать в гамильтониане возмущения ħH1

ответственного за уширение, только его секулярную часть ħH
¢0

, которая коммутирует с H0

и, следова­тельно, не может отвечать перемешиванию состояний с различными пол­ными М; такое смешивание является причиной появления побочных линий. Таким образом, сокращение дипольного гамильтониана до его секулярной части

не только упрощает вычисление моментов, но и делает его более точным.

Прежде чем начать расчет, отметим, что линия магнитного резонанса симметрична относительно центральной частоты w0
. Убедимся в правиль­ности этого утверждения. Если | а > и | b > — два собственных состояния ħ(H0

+H
¢1

) с разностью энергии ħ(Еа
— Еb
) = ħw0
+ dab
, то два состоя­ния | а~
> и | b~
>, полученные из | а > и | b > соответственно путем пово­рота всех спинов в обратном направлении, будут также собственными состояниями ħ(H0

+H
¢1

) с ħ(Еb
~ – Еa
~) = ħw0
+ dab
. таким образом, каждо­му переходу с частотой w0
+ u соответствует переход равной интенсивности с частотой w0
– u. Если f(w) — функция формы, то h (u) = f(w0
+ u)— четная функция u. поскольку моменты кривой пропорциональны про­изводным в начале координат от их фурье-преобразования, мы будем применять для их вычисления формулу (13). Вследствие узости линии ядерного магнитного резонанса можно пренебречь изменением величины w в пределах ширины линии и предположить, что форма линии описывается c¢¢(w)/w, так же как и c¢¢(w). Тогда, поскольку f(w) — нормированная функция формы, (13) может быть переписано в виде

f(w) = A∫ G(t) cos wt dt, (IV.26)

где постоянная A определяется из условия нормировки f(w), а опреде­ленная ранее четная функция G (t) равна Sp{M
x

(t)
M
x

}. обратно

G(t) = 2/(pA)∫ f(w) cos wt dw, (IV.27)

Согласно вышеизложенному, в выражении

M
x

(t)
= е
i

H

t

M
x

е–

i

H

t

.

следует вместо H
= H0

+H1

подставить H
= H0

+H
¢1

что значи­тельно упрощает вычисления. поскольку H0

и H
¢1

коммутируют, можно записать

exp{i(H0

+H
¢1

)t} = exp(iH0

t) exp(iH
¢1

t).

учитывая, что зеемановский гамильтониан ħH0

равен ħw0

Iz
функцию G (t) можно переписать в виде

(IV.28)

Шпур произведения операторов инвариантен относительно циклической перестановки, поэтому

(IV.28a)

В этом выражении оператор exp(iw0

Iz
t) определяет поворот на угол w0

t вокруг оси z,
и, следовательно, можно записать

(29)

Легко видеть, что второй член в (29) равен нулю, так как поворот спинов на 180°, например вокруг оси ох,
не изменяет H
¢1

и M
x

но преоб­разует M
у

в – M
y

.

Заменяя в (27) G (t) на G1
(t)
cosw0

t,
где

G1
(t)=Sp{е
xp
(
i
H
‘1

t
)
M
x

е(–
i
H
‘1

t
)M
x

}

называется сокращенной функцией автокорреляции, и вводя обозначение

h (u) = f(w0
+ u),

получаем

Заменяя нижний предел на – ¥, что допустимо для узких линий, найдем

Поскольку h
(и)
является четной функцией, второй интеграл равен нулю и

G1
(t)=Sp{е
xp
(
i
H
‘1

t
)
M
x

е(–
i
H
‘1

t
)M
x

}

(30)

Различные моменты кривой распределения h
(и)
относительно резонансной частоты w =w0
определяются выражением

Нечетные моменты равны нулю, а четные определяются формулой

(31)

таким образом, для вычисления моментов резонансной кривой достаточно разложить G1
(t) в выражении (30) по степеням t. При этом коэффициенты разложения представляют собой шпуры от операторов, которые являются полиномами от H
¢1

и M
x

.

сущность метода заключается в том, что значения упомянутых шпуров не зависят от выбора основных состояний и могут быть вычислены, напри­мер, в представлении, где значения mj
= Ij
z
отдельных спинов (поэтому представление называется mj
-представлением) являются хорошими кван­товыми числами. таким образом, нет необходимости решать проблему отыскания собственных состояний | n > полного гамильтониана. Из опре­деления (30) функции G1
(t) вытекает, что

(IV.32)

Формула (32) просто находится из дифференциального уравнения

(33)

которому удовлетворяет зависящий от времени оператор

M
¢
x

(t)
= е(i
H1

¢
t)
M
x

е(–i
H1

¢
t)t
.

Решение этого уравнения может быть представлено в виде ряда

M
¢
x

(t)
=
M
x

+
M
¢
(1)

x

(t)
+
M
¢
(2)

x

(t)
+ …+
M
¢
(n)

x

(t)
,

отдельные члены, которого получаются методом индукции с помощью соот­ношения

из последнего сразу же следует (32). Из (31) и (32) для первых двух четных моментов находим

(34)

(34a)

B (34) M
x

заменено полным спином Ix
, пропорциональным M
x

. По­скольку мы определили гамильтониан в виде ħH
, следует помнить, что эти моменты соответствуют ширинам линии, измеренным в единицах w = 2pn.