Учебная работа. Доклад: Принцип создания мощного лазера на свободных электронах
ПРИНЦИП создания МОЩНОГО ЛАЗЕРА НА СВОБОДНЫХ ЭЛЕКТРОНАХ.
Показана возможность создания лазера на свободных электронах,
перестраиваемого вплоть до диапазона гамма-лучей.
В настоящее время интенсивно развивается релятивистская электроника. значительное место в ней занимают устройства, которые называются лазерами на свободных электронах (ЛСЭ). Их принцип основан на том, что движущаяся заряженная частица (ДЗЧ) приводится в колебательное движение поперек направления своего движения. При этом возникает излучение в малом телесном угле вперед по направлению движения ДЗЧ. Это излучение зависит от продольной скорости ДЗЧ, и шага ондулятора (см. ниже). Оно может быть когерентным, что и дало название ЛСЭ.
Для того, чтобы частица имела поперечные колебания, применяется система называемая ондулятором
. По принципу воздействия на ДЗЧ ондуляторы делятся на электрические и магнитные. Здесь рассматривается магнитная система Рис. 1.
недостатком существующих ондуляторов является то, что для создания необходимого магнитного поля (МП) используются постоянные электромагниты с сердечником. Это конструктивно ограничивает шаг ондулятора — L
онд ( период изменения МП в системе).
Рис. 1 Рис. 2
Для создания интенсивного пучка ДЗЧ и увеличения выходной мощности ЛСЭ, применена многоканальная схема со сложением отдельных пучков (Рис. 2)
Источником ДЗЧ могут быть электронные и ионные пушки, радиоактивные источники высокой интенсивности (Pu, Co, Sr …), космические лучи и потоки ДЗЧ от Солнца. вполне возможно применение ТРЕГа в качестве источника ДЗЧ – тогда это будет протонный или альфа-лазер.
На Рис.2 показаны: 1 — первичные пучки ДЗЧ; 2 — рассеивающая магнитная линза; 3 — суммарный пучок ДЗЧ; 4 — ондулятор; 5 — выходное излучение.
особенностями данной схемы являются: 1) применение для сборки пучков универсальной магнитной линзы в рассеивающем режиме — это позволяет минимизировать апертуру суммарного пучка ДЗЧ; 2) применение магнитного ондулятора со сверхмалым, регулируемым периодом, что позволяет значительно повысить частоту выходного излучения. При увеличении энергии излучаемого кванта до 80MeV, становится возможной фотоядерная реакция: 83
Bi209
+80MeV®79
Au197
+22
He4
+4nO
. появляется возможность фотоядерного разложения радиоактивных отходов, обычных и боевых ядерных материалов.
На Рис.3 показаны: 1) секционированная тороидальная катушка с током I
(для секций могут быть использованы обмотки электродвигателей различного типа, мощности и назначения); 2) тороидальное плазменное образование с ДЗЧ (сильно увеличено); 3) МП, исполняющее роль ондулятора; 4) выходное излучение. Пунктиром показаны дополнительные управляющие слаботочные обмотки.
Они используются для создания слабого МП, которое однонаправлено с основным МП и вращается путем последовательного цикличного переключения обмоток. Это МП – для динамического выравнивания возможных технологических неоднородностей основного МП.