Учебная работа. Статья: Физическая сущность парадокса близнецов
Павло ДАНЫЛЬЧЕНКО
Показано, что мнимый парадокс близнецов имеет место в СТО из-за взаимного неразличения стандартного времени (путиподобного собственного времени движущегося объекта) и координатоподобного собственного времени инерциальной системы отсчета (ИСО) и из-за игнорирования вследствие этого необходимостью перерасчета временных координат событий после перехода близнеца-путешественника из одной ИСО в другую, движущуюся в обратном направлении.
Хотя мнимому парадоксу близнецов (парадигме часов) и посвящено множество как научных, так и научно-популярных работ, ни в одной из них до конца так и не вскрыта истинная его физическая сущность. Обычно этот парадокс объясняют тем, что один из близнецов все время движется с постоянной скоростью, а другой, кроме того, в определенные моменты времени совершает еще и ускоренные движения. Такое объяснение указывает лишь на неравнозначность условий движения близнецов. однако оно все же не разъясняет, почему возраст близнеца-путешественника будет всегда меньше возраста близнеца-домоседа, независимо от длительности их относительного движения с постоянной скоростью а, следовательно, и независимо от величины разницы возрастов, накопившейся в процессе этого равномерного движения в их инерциальных системах отсчета пространственных координат и времени (ИСО). Ведь во всех мысленных экспериментах с идентичными мировыми линиями (МЛ) участков ускоренного движения близнеца-путешественника из-за этого ускоренного движения должна возникать одна и та же конечная разница в возрасте близнецов. первая же разница, в отличие от этой конечной разницы возрастов, в ИСО каждого из близнецов может достигнуть сколь угодно большего значения. И поэтому, эти разницы все же будут приводить к взаимно противоречивым сведениям о возрасте близнецов. Вскрытие физической сущности мнимого парадокса близнецов и является целью этой статьи.
Первопричины парадокса близнецов
Как показано в [1], специальная теория относительности (СТО), на самом деле, допускает возможность существования особой (выделенной) системы отсчета пространственных координат и времени (СО), а именно, – фундаментальной СО не увлекаемого движением физического вакуума (ФВ), в которой частота реликтового излучения является изотропной. В этой СОФВ, мировое пространство и космологическое время которой, согласно Ньютону [2], являются абсолютными, и будем рассматривать движение объектов. На рисунке показаны МЛ равномерного движения двух объектов вдоль одной и той же прямой линии в мировом (абсолютном) пространстве. Первый из них, на котором находится близнец-домосед, движется в СОФВ с абсолютной скоростью V0, а второй, на котором находится близнец-путешественник, сначала с относительной скоростью v1 = (V1 – V0) / (1 – V1V0) удаляется от первого, а затем с относительной скоростью v2 = (V2 – V0) / (1 – V2V0) сближается с ним. здесь: V1 и V2 – скорости абсолютного движения второго объекта соответственно в прямом и в обратном направлениях. При этом для упрощения математических выкладок принято, что расстояния и пространственные координаты измеряются в световых единицах длины и, поэтому, собственное значение скорости света c = 1.
Рис. 1. МЛ равномерного движения двух объектов вдоль одной и той же прямой линии в мировом (абсолютном) пространстве: 1 – МЛ первого объекта; 2 – МЛ второго объекта во время его удаления от первого объекта; 3 – МЛ второго объекта во время его сближения с первым объектом; 4 – МЛ света
Пусть в СОФВ одновременно с приходом второго объекта в точку F первый объект приходит в точку B0, а собственное время движения второго объекта из точки A в точку F равно Δt1. Тогда промежуток космологического (абсолютного) времени, соответствующий этому собственному времени и отсчитываемый в СОФВ от момента прихода первого объекта в точку B0, а второго – в точку F, будет равен: TA = –Γ1Δt1, где Γ1 = (1 – V12)–1/2. В зависимости от величины в точке F абсолютной скорости Vi второго объекта промежутки космологического времени между событиями в точке Bi на первом и в точке F на втором объектах, являющимися одновременными (Δt = 0) в ИСО второго объекта, будут равны: δTi = ΓiVi · xBi, где: xBi – наблюдаемая в ИСО второго объекта координата положения первого объекта. таким образом, при разных значениях в точке F абсолютной скорости второго объекта одновременными событию в точке F его СО будут события, соответствующие не одному и тому же положению XBi = Γi · xBi в мировом пространстве первого объекта.
Пусть модули относительных скоростей движения объектов в процессе их удаления и сближения равны друг другу (v2 = –v1). Тогда в момент изменения направления движения вторым объектом изменение положения первого объекта близнецом-путешественником наблюдаться не будет (xB2 = xB1). однако, при этом произойдет переход от одновременности в СО близнеца-путешественника с моментом изменения его движения одних событий к одновременности других событий на первом объекте, соответствующих уже другому положению в мировом пространстве последнего: XB2 = XB1(1 –v1V0) / (1 + v1V0). То есть, при переходе второго объекта от движения со скоростью V1 к движению со скоростью V2 происходит замена положений первого объекта, считающихся одновременными с положением второго объекта в точке F. Тем самым, как бы возникает наблюдаемый в СО близнеца-путешественника перепад координатного времени, соответствующего событиям на первом объекте. И, следовательно, имеет место исключение из рассмотрения части путиподобного (стандартного [3]) собственного времени первого объекта, определяющего возраст близнеца-домоседа. Поэтому то и возникает у близнеца-путешественника ложное умозаключение об уменьшении суммарного времени, истекшего на первом объекте с момента разлуки до момента его встречи с находящимся на этом объекте близнецом-домоседом. Это и является физической сущностью мнимого парадокса близнецов.
Результаты непосредственных наблюдений
С учетом перепада координатного времени полное стандартное (путиподобное собственное) время первого объекта, наблюдаемое близнецом-путешественником, будет таким же как и в СО первого объекта. наличие перепада собственного времени первого объекта («наблюдаемого» близнецом-путешественником опосредствованно через две его ИСО) отнюдь не означает, что информация о событиях, произошедших на первом объекте между точками B1 и B2, не поступает на второй объект. В момент изменения направления движения второго объекта к нему поступает информация о событии, произошедшем на первом объекте в тот момент времени, когда он находился в точке E.
сразу же после изменения направления движения второго объекта изменится и наблюдаемое близнецом-путешественником смещение спектра излучения первого объекта. Это может привести к ложному заключению этим близнецом, что первый объект удалялся от него лишь в течение меньшего времени, чем на самом деле, и уже приближается к нему в течение некоторого времени. И, следовательно, промежутки собственного времени первого объекта, соответствующие взаимному сближению и удалению объектов, будут рассматриваться близнецом-путешественником как имеющие иные значения, нежели наблюдаемые в СО первого объекта близнецом-домоседом. однако это несоответствие вполне объяснимо неверностью определения (сделанного из ложной предпосылки об изменении направления движения не вторым, а первым объектом) близнецом-путешественником момента прекращения удаления и начала сближения объектов по часам первого объекта. несмотря на это суммарное значение собственного времени первого объекта, наблюдаемое близнецом-путешественником, будет таким же каким оно наблюдается и в СО первого объекта близнецом-домоседом. А это значит, что на второй объект поступает информация обо всех событиях, произошедших на первом объекте. Из-за движения второго объекта в прямом и в обратном направлениях с разными абсолютными скоростями сокращение расстояний между объектами до и после изменения его движения будут наблюдаться близнецом-путешественником неодинаковыми. При этом изменение расстояния до точки E вследствие неодинакового релятивистского сокращения размеров может привести к взаимному псевдоналожению мнимых промежутков времени взаимного сближения и удаления объектов по часам близнеца-путешественника, отсчитывающим стандартное (путиподобное) время. Это взаимное псевдоналожение промежутков времени обусловлено удалением первого объекта из положения с координатой xE1 в положение с координатой xE2 со скоростью большей скорости света в точке наблюдения. И как бы плавно не происходил переход от V1 к V2, при таком «наблюдении» (опосредствовано через две ИСО) будет иметь место как бы «течение времени вспять», связанное с переходом второго объекта и находящегося на нем близнеца-путешественника из одной ИСО в другую. Непосредственное же наблюдение, как было показано ранее, этого не обнаруживает. Данный псевдоэффект связан с расчетом значений промежутков времени взаимного сближения и удаления объектов, исходя из предположения об одинаковости несобственных (координатных [3]) значений скорости света (vc = 1) во всем собственном пространстве второго объекта, движущегося не инерциально в процессе перехода от равномерного движения со скоростью V1 к равномерному движению со скоростью V2. На самом же деле, это предположение ложно. Несобственные значения скорости света в точках нахождения первого объекта в процессе его перемещения с расстояния xE1 на расстояние xE2 не могут быть меньше скоростей перемещения первого объекта в СО второго объекта. А ведь эти скорости значительно превышают скорость света в точке наблюдения смещения спектра излучения, что имеет место из-за чрезвычайно быстрого изменения в СО второго объекта релятивистского сокращения расстояния до первого объекта.
При учете изменения несобственного значения скорости света в собственном пространстве второго объекта в процессе его неинерциального движения рассмотренное здесь наложение времен в СО второго объекта наблюдаться не будет. стандартное время, определенное в этой СО по количеству цугов волн, пришедших от источника стандартного излучения первого объекта, будет совпадать с его значением, определяемым по покоящимся на первом объекте часам.
Выводы
Физическая сущность мнимого парадокса близнецов (парадигмы часов) заключается в игнорировании необходимости перерасчета временных координат событий при переходе из одной ИСО в другую. Во избежание подобных парадигм необходимо также учитывать, что несобственные (координатные) значения скорости света [3] в СО ускоренно движущихся объектов могут сколь угодно превышать собственное
список литературы
Даныльченко П.И. Калибровочное обоснование специальной теории относительности, в сб.: Калибровочно-эволюционная теория Мироздания, Винница, 1994, вып. 1, с. 10; Калибровочные основы СТО, в сб.: Калибровочно-эволюционная интерпретация специальной и общей теорий относительности, Вінниця, О. Власюк, 2004, с.17; Калибровочная интерпретация сто. Киев, НиТ, 2005. Ньютон И. Математические начала натуральной философии. М.: Наука, 1989. Меллер К. Теория относительности. М.: Атомиздат, 1975.