Учебная работа. Контрольная работа: Изучение упругого и неупругого ударов шаров

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Контрольные рефераты

Учебная работа. Контрольная работа: Изучение упругого и неупругого ударов шаров

Министерство образования РФ

Рязанская государственная радиотехническая академия

Кафедра ОиЭФ

Контрольная работа

«ИЗУЧЕНИЕ УПРУГОГО И НЕУПРУГОГО УДАРОВ ШАРОВ»

Выполнил ст. гр. 255

Ампилогов Н. В.

Проверил

Малютин А. Е

Рязань 2002г.

Цель работы: изучение законов сохранения импульса и механической энергии на примере ударного взаимодействия двух шаров; определение средней силы удара, коэффициента восстановления скорости и энергии деформации шаров.

Приборы и принадлежности: установка для изучения упругого и неупругого ударов шаров ФПМ-08.

Элементы теории

Удар (соударение) – это столкновение двух или нескольких тел, при котором взаимодействие длиться очень короткое время. При этом часть энергии данных тел полностью или частично переходит в потенциальную энергию упругой деформации или во внутреннюю энергию тел.

В качестве меры механического взаимодействия тел при ударе вместо ударной силы служит её импульс за время удара.

1)

где <> — средняя сила удара; t – время ударного взаимодействия.

Если импульс изменяется на конечную величину D(m) за время t, то из второго закона динамики следует, что

2)

Тогда можно выразить так

3)

где m1
и m2
– массы взаимодействующих тел; DV1
и DV2
изменение скоростей данных тел при ударе.

абсолютно упругий удар – это удар при котором механическая энергия тел не переходит в другие механические виды энергии, и кинетическая энергия переходит полностью в потенциальную энергию упругой деформации (затем обратно).

Абсолютно неупругий удар – это удар при котором потенциальной энергии не возникает, кинетическая энергия полностью или частично переходит во внутреннюю энергию. Суммарный импульс данной системы сохраняется, а большая часть кинетической энергии переходит в тепло.

Линяя удара – это линия перпендикулярная поверхностям соударения обоих тел и проходящая через точку касания данных тел при ударе.

Прямой удар – есть удар, при котором вектора скоростей движения центров масс данных тел параллельны линии удара (перед непосредственным взаимодействием).

Центральный удар – это прямой удар, при котором центры масс соударяющихся тел лежат на линии удара.

Косой удар – это удар не являющийся прямым.

В данном случае будем считать, что система шаров на экспериментальной установке является изолированной. Тогда на основании законов сохранения импульса и энергии будет справедлива следующая формула

4)

5) ,

6) где m1
и m2
– массы шаров; , и , — их скорости до и после взаимодействия.

Из (4) и (5) выражаем скорости шаров после столкновения и

7) 7)

В данном случае рассматривался – абсолютно упругий удар. Но в действительности кинетическая энергия тел после соударения становиться меньше их первоначальной энергии на величину, которую можно найти так:

8) ,

где Kс
– коэффициент восстановления скорости. Эта часть кинетической энергии тел при ударе преобразуется в их внутреннюю энергию.

Коэффициент восстановления скорости можно найти по следующей формуле:

9)

Если при соударении потеря кинетической энергии отсутствует (Kс
= 1), то удар называется абсолютно упругим, а при Kс
= 0 абсолютно неупругим. Если же 0 < Kс < 1, то удар является не вполне упругим.

Применительно к соударяющимся шарам, один из которых покоится, формулу (4) можно записать так:

10) , а для абсолютно неупругого удара .

Скорости шаров до и после удара можно определить по формулам:

11) ; 12) ; 13)

где l – расстояние от точки подвеса до центра тяжести шаров (l = 470 ± 10 мм.), a0
– угол бросания правого шара, a1
и a2
– углы отскока соответствующих шаров.

Расчётная часть


ti
´10-6

Dti
´10-6

(Dti
´10-6
)2

a1i

Da1i


a2i

Da2i

1
76
-14
196

-0,5°
0,25°
12°
-0,2°
0,04°

2
103
13
169

-0,5°
0,25°
13°
0,8°
0,64°

3
96
6
36

0,5°
0,25°
11°
-1,2°
1,44°

4
93
3
9
2,5°


13°
0,8°
0,64°

5
82
-8
64

0,5°
0,25°
12°
-0,2°
0,04°

90
2,5°
12,2°

после работы с установкой имеем значение следующих величин: (угол бросания правого шара) a0
= 15°; (массы правого и левого шаров соответственно) m1
= 112,2 ´ 10-3
кг, m2
= 112,1 ´ 10-3
кг; (длина бифилярных подвесов обоих шаров) l = 470 ´ 10-3
м; (погрешность значения длин бифилярных подвесов) Dl = 0,01 м; (цена деления микросекундометра) ct
= 10-6
; (цена деления градусных шкал) ca
= 0,25°.

При известном среднем арифметическом значении времени найдём погрешность измерения данной величины:

с.

с.

При известных значениях и найдём погрешность их измерения (в радианах, при p = 3,14):

рад.

рад.

рад.

рад.

при Dсл
» 0;рад.

при sсл
» 0; sa
0
= sс
; ;

рад.

теперь найдём скорости данных шаров до соударения (V1
, V2
) и их скорости после взаимодействия (U1
, U2
). При этом (скорость левого шара) V2
= 0 т. к. он покоиться до удара. значения остальных скоростей находят из следующих формул (через l, a и g):

м/с2
; м/с2
; м/с2
;

Найдём погрешности вычисления данных скоростей.

м/с.

м/с.

м/с.

По формуле (3) найдём (силу кратковременного взаимодействия шаров) < F >. Учитывая, что DV1
= |U1
— V1
| и DV2
= |U2
– V2
|.

Н.

Н.

и < F2 >:

Н.

Найдём погрешность величины < F > по формуле

(погрешность вычисления массы пренебрежимо мала)

Н.

Н.

Н.

далее по формуле (9) найдём коэффициент восстановления скорости Kс
:

; при V2
= 0,

Пользуясь формулой для вычисления погрешности косвенных величин

Найдём DKс
. Для получения более точного значения погрешности, используя формулы (11, 12, 13), сведём исходную формулу для вычисления Kс
(9) к формуле с аргументом состоящим только из значений прямых измерений (t,a1
,a2
).

= 4,6 ´ 10-2

теперь по формуле (8) вычислим значение энергии деформации шаров DEk
:

Дж.

Осталось найти погрешность D(DEK
). При использовании следующей формулы предполагается, что V1
и Kс являются прямыми измерениями.

DEK
= 0,17 Дж.