Учебная работа. Контрольная работа: Магнитные цепи. Величины и законы, характеризующие магнитные поля в магнитных цепях

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Контрольные рефераты

Учебная работа. Контрольная работа: Магнитные цепи. Величины и законы, характеризующие магнитные поля в магнитных цепях

МАГНИТНЫЕ ЦЕПИ. ВЕЛИЧИНЫ И законы,

ХАРАКТЕРИЗУЮЩИЕ МАГНИТНЫЕ ПОЛЯ В МАГНИТНЫХ ЦЕПЯХ

Магнитное поле проявляет себя следующим образом:

1) В проводнике, который движется в постоянном магнитном поле, наводится ЭДС;

2) В неподвижном проводнике, который находится в переменном магнитном поле, наводится ЭДС;

3) На проводник, по которому течет ток и который находится в магнитном поле, действует механическая сила.

параметры, характеризующие магнитное поле:

Магнитный поток F — характеризуется числом силовых линий, пронизывающих поверхность площадью S.

Магнитное поле принято изображать силовыми линиями, направленными от северного к южному полюсу магнита.

[F] = [ Вб] = [ В×с]. ,

где a — угол между нормалью к площадке и направлением силовых линий.

индукция магнитного поля характеризует интенсивность магнитного поля в заданной точке пространства. Это векторная величина. Направление ее совпадает с касательной к силовой линии

[B] =[Вб/м2
] = [Тл].

Если магнитное поле равномерное, то .

Поток вектора индукции магнитного поля через замкнутую поверхность равен нулю

.

Силовые линии всегда замкнуты. Это принцип непрерывности силовых линий.

Напряженность магнитного поля — это векторная величина, которая совпадает с направлением индукции и характеризует интенсивность магнитного поля в вакууме (при отсутствии магнитных веществ). [] = [А/м].

,

где ma
– абсолютная магнитная проницаемость среды.

mr
=ma
/m0
– относительная магнитная проницаемость.

m0
=4p×10-7
Гн/м – магнитная постоянная, равная абсолютной магнитной проницаемости в вакууме.

В 1831 г. Фарадей открыл закон

Электромагнитной индукцией называется явление возбуждения ЭДС в контуре при изменении магнитного потока, сцепленного с ним. Индуктированная ЭДС равна скорости изменения потока, сцепленного с контуром:

.

Знак «минус» выражает правило Ленца:

Ток, создаваемый в замкнутом контуре индуцированной ЭДС, всегда имеет такое направление, что магнитный поток тока противодействует изменению магнитного потока внешнего поля, его вызвавшего.

поскольку

, то

ЭДС, которая индуцируется в обмотке, равна сумме ЭДС каждого витка:

,

где w – число витков в обмотке.

,

где F1
, F2
, …, Fw
– потоки, которые охватывают, соответственно, первый, второй и w витки обмотки.

— полный магнитный поток – потокосцепление обмотки.

Тогда для обмотки:

.

Если каждый виток обмотки охвачен одним и тем же потоком, тогда:

и .

Если магнитное поле создается током этой же обмотки, то такая индуцированная ЭДС называется ЭДС самоиндукции.

Если магнитное поле создано током других контуров, то такая ЭДС называется ЭДС взаимоиндукции.

; .

Если проводник перемещается в постоянном магнитном поле, то индуцированная ЭДС равна:

,

где l – активная длина проводника;

V – скорость перемещения проводника;

B – индукция магнитного поля;

a — угол между направлением силовых линий и направлением перемещения проводника.

По правилу правой руки (большой палец – направление перемещения).

Если проводник с током I находится в магнитном поле с индукцией B, то на проводник действует сила:

закон

где a — угол между направлением силовых линий и направлением проводника.

По правилу левой руки (большой палец — сила):

В электротехнике все материалы делятся на немагнитные и магнитные. У немагнитных материалов (пара- и диамагнетики) относительная магнитная проницаемость mr
»1: медь, алюминий, изоляторы, воздух, вода и др.

Магнитные материалы (ферромагнетики) имеют mr
>>1: железо, никель, кобальт, сплавы – сталь, чугун и др.

особенностью ферромагнитных материалов является то, что относительная магнитная проницаемость mr
¹Const, а зависит от интенсивности магнитного поля.

Для ферромагнетиков зависимости B(H), m(H) нелинейны.

B(H) — кривая намагничивания.

B0
=m0
H.

При циклическом перемагничивании образуется петля гистерезиса:

Br
– остаточная магнитная индукция;

Hc
– коэрцитивная сила.

Ферромагнетики делятся на магнитомягкие (Hc
< 4 кА/м) и магнитотвердые. У магнитомягких материалов петля гистерезиса узкая (используются для сердечников электротехнического оборудования). Площадь петли гистерезиса характеризует потери на гистерезис.

Магнитотвердые материалы имеют широкую петлю гистерезиса (используются для постоянных магнитов, систем носителей информации – компьютерные диски).

Закон полного тока устанавливает связь между напряженностью магнитного поля и током, которым это поле создано.

«Линейный интеграл от вектора напряженности магнитного поля вдоль любого замкнутого контура равен полному току, охватывающему данный контур».

.

Полный ток – это алгебраическая сумма токов.

В пространстве вокруг этих проводников с током образуется магнитное поле. В соответствии с законом полного тока:

.

Токи, которые при выбранном направлении обхода совпадают с направлением правоходового винта, считаются положительными.

Для многовитковой обмотки:

Контур интегрирования охвачен током w раз:

Величина называется намагничивающей или магнитодвижущей силой.

При практических расчетах контур интегрирования можно разбить на ряд участков с таким расчетом, чтобы напряженность магнитного поля на протяжении участка оставалась неизменной и ее направление совпадало с направлением dl. В этом случае интеграл меняется на сумму:

и

.

Магнитная цепь – это совокупность намагничивающих сил, ферромагнитных участков и других сред, по которым замыкается магнитный поток.

Магнитные цепи могут быть: простыми и сложными (один или несколько МДС); однородными и неоднородными (напряженность магнитного поля постоянна или непостоянна); разветвленными и неразветвленными (поток разветвляется или нет) и др.

Рассмотрим простую неразветвленную магнитную цепь с постоянной МДС.

lст
– длина силовой линии на протяжении всего участка в стали;

l0
– длина воздушного зазора.

Для данной магнитной цепи запишем:

.

Но поэтому. Отсюда

Тогда запишем:

и

— закон Ома для магнитной цепи.

— магнитное сопротивление стального участка (сравнить с );

— магнитное сопротивление воздушного зазора.

Так как mст
>> m0
, то << .

поэтому в магнитную цепь вводят ферромагнитный материал (сердечник с малым магнитным сопротивление), что позволяет при одной и той же намагничивающей силе получать большой магнитный поток.

Аналогия между электрическими и магнитными цепями
электрические величины
Магнитные величины

ток
I

Поток
F

ЭДС
E

МДС
F

Сопротивление


Сопротивление

Напряжение


Напряжение

Проводник

Ферромагнетик

Изолятор

Немагнитное вещество

Удельная проводимость


Магнитная проницаемость
ma

По аналогии можно записать законы Кирхгофа для магнитных цепей.

1-й закон Кирхгофа: Сумма магнитных потоков ветвей разветвленной магнитной цепи в узле равна нулю.

2-й закон

.

Принцип расчета магнитных цепей постоянного тока

Фр
— магнитный поток рассеяния (он обычно мал).

ЗАДАНО: поток Ф, размеры магнитопровода, материал сердечника, марка стали, кривая намагничивания B(H).

задача: Найти — намагничивающую силу обмотки, необходимую для создания этого магнитного потока Ф.

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА:

1) Цепь разбивается на участки с таким расчетом, чтобы индукция и напряженность магнитного поля на протяжении участка оставалась неизменной;

По конструктивным размерам магнитопровода определяются lk
и Sk
;

Предполагается, что поток Ф на каждом участке одинаков;

2) По заданному магнитному потоку Ф определяем индукцию на каждом участке

;

затем, зная Bk
по кривой намагничивания определяем Hk

3) Зная Hk
, по закону полного тока находим МДС

и находим ток .