Учебная работа. Реферат: Билеты по Курсу физики для гуманитариев СПБГУАП

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Контрольные рефераты

Учебная работа. Реферат: Билеты по Курсу физики для гуманитариев СПБГУАП

1.В-во и маса, принцип эквивалентности. В-во-вид материи, кот. Обладаетмасой покоя. В-во слагается из элементарн. частиц.В-во всегда локализовано вограниченной части прост-ва. Его полож. можно задать с помощью огранич.числам параметров (степени свободы). Mаса хар-зует кол-во материи. Этоформулировка качественная. Правильнее говорить, что маса-одна из основныххарактеристик материи, определяющая ее инерционные и грав-ные св-ва. В Т.Ньютона маса расм-лась, как кол-во в-ва. понятие масы ввел в механикуИ.Ньютон, давая определение импульса — p=mv. Массой он назвал коэф.пропорц-ности m, постоянную для тела величину. Эквивалентное определениемасы вытекает и из 2го з-на Ньютона: F=ma здесь маса — это коэф.пропорц-ности между результирующей силой и вызываемым ею ускорением. Опред.таким обрзом маса хар-зует инертность тела. Опред. таким обрзом маса наз.инертной.

В Т. гравитации Ньютона маса выступает как источник поля сил тяготения. Налюб. тело, помещ. в это поле, дествует сила, пропорциональная егособственной массе, массе источника и направленая к источнику. З-н всемирноготяготения: F=G*M1*M2/r^2, где G=6,670*10^(-11)м3/(кг(с2)- грав-наяпостоянная. Из этой формулы можно получить связь между масой тела и еговесом Р в поле тяготения Земли, if считать, что m1 — маса тела, m2=M — масаЗемли, а r=Rз — радиус Земли: P=G*mM/(R3)^2=m*GM/(R3)^2=mg т.е. P=mg(7.2).Опред. таким обрзом маса наз. гравитационной. Oпыты показали, чтоинерционная и грав-ная масы при выборе одинаковой системы единиц равны. Этотфундаментальный з-н природы наз. принципом эквивалентности масс.Экспериментально этот принцип был проверен в 1971 году с очень высокойточностью-10-12. В класич. физике считалось, что маса тела не меняется ни вкаких процессах. Это утв. формулировалось в виде з-на сохранения масы.понятие масы приобрело > глубокий смысл в рамках релятивистской механики илиТ. отнсит-ти, рассматривающей движение тел с большими скоростями.Релятивистская механика показывает, что не сущ-вует по отдельности законовсохранения масы и энергии. Они слиты воедино. Это естствено, так как метод познания. Способ получить частичные ответы на вопросыпридуман несколько сотен лет назад. Наблюдение, размышление и опыт сост. такназываемый научный метод познания, кот. и позволяет давать ответы на многиеинтересующие нас вопросы. Основой научного метода явл. опыт — пробный каменьвсех наших знаний. Опыт, эксперимент — это единственный судья научн. истины.Проводя наблюдения каких-либо природных явлений, невозможно охватить всепроцесы, с этими явлениями связаные. поэтому нужно отбросить всевторостепенные факты и выделить осн., т.е. суть явл-я. Этот процес наз.абстрагированием или построением модели явл-я. В размышлениях созд-ся основанаблюдаемого явл-я, его модель. Что явл. существенным для даного явл-я, ачто несущественным, вопр неоднозначный и сложный. Не всегда он решаетсясразу, на перв. этапах наблюдения и размышления. В создаваемой модели должныбыть учтены главные хар-еристики и осн. параметры изучаемого явл-я. Построенная модель должна не тольковерно описывать наблюдаемое это явление, но и хорошо прогнозировать егоразвитие в новых усл.. Предсказания Т. проверяются экспериментом илиопытом — важнейшей частью научного метода познания. С самого началанеобходимо договорится, что подразумеваться под тем или иным термином. Впонятие «опыт» будем вкладывать смысл наблюдения за явлением приконтролируемых усл., т.е. наблюдения с возможностью контролировать,воспроизводить и изменять желаемым обрзом внешние усл-я. Существеннавозможность создавать как обычные, так и искусственные (т.е. в природе невстречающиеся) усл-я. Физика, химия, биология и ряд других наук называютсяестественными имено потому, что в их основе лежит опыт. Для объясненияэкспериментальных фактов привлекаются гипотезы. Гипотеза — этопредположение, позволяющее объяснить и количественно описать наблюдаемоеявление. Описать что-либо количественно можно лишь на языке математики.Между явлениями природы сущ. устойчивые, повторяющиеся связи — проявлениязаконов природы. качественная формулировка законов может быть иногда данабез привлечения математического аппарата. З-ны, записанные на языке формулпозволяют перейти к > высокой ступени познания. Эту ступень называют Т..Т.е. при определенных усл. выдвинутая гипотеза может перейти в Т., в основекот. лежат законы. Т. дает между наблюдаемыми явлениями, т.е. имеют математическуюформулировку. Естествознание, изучающее количественные (т.е. точные)соотношения природных явлений, отн. к точным наукам. понятие «точное»требует комментариев. точные науки, как правило оперируют не с абсолютноточными, а с приближенными величинами. При количественном описании любогонаблюдаемого явл-я всегда оговаривают, с какой степенью точности имеют дело,т.е. приводят погрешности измеряемых величин. гипотезы должны быть провереныфактами, опытами, здравым смыслом. В своей облти они должны объяснять всюсовокупность имеющихся явлений. Но этого мало. Для того, чтобы стать Т.,гипотеза должна сформулировать количественные отношения между наблюдаемымиявлениями. фактически это означает формулировку законов. Непременным усл.превращения гипотезы в Т. явл. предсказание новых, до сих пор ненаблюдавшихся и из известных теорий не следующих, явлений, и подтверждениеэтих предсказаний в специально поставленных экспериментах. Нужно различатьзаконы природы и законы науки. 1вые проявляются в особенностях протеканияприродных явлений и процесов и во взаимосвязи некот. величин. Они неизменныи всегда выполняются. Научные законы — это попытка описать законы природы наязыке мат. формул и точных формулировок. В дальнейшем речь будет идти толькоо них. Научные законы не точны и не постояны. На определенных этапахразвития науки возникает необходимость уточнения наблюдаемых в опыте явленийи пересмотра законов или границ их применимости. Постоянная проверка опытныхфактов на базе новых экспериментальных методик, позволяющих увел-ть точностьпроведения эксперимента, необходима всегда на любом уровне знаний.Расхождение экспериментальных данных и существующих законов позволяетвыдвигать новые гипотезы и строить новые Т..

3. Постулативность основных з-нов естествознания. Для описания поведенияпростых и сложных систем нужно уст-ть «правила игры», т.е. законы котподчиняются те или иные вид движения материи. В некот. науках, кот. Неотносятся к ессвеным, например геометрия, поступают следующим обрзом.Сначала формулируются аксиомы, а потом из них делаются выводы (теоремы).Логика построения ественых наук другая, нельзя сразу ввести законы исмотреть, что из них след.. Так поступить нельзя, поскольку исследователюнеизвестны все законы естествознания. Одной из задач явл. имено ихустановление и формулирование. Но, ответив на кажд. вопр, исследовательнеизбежно ставит несколько новых. Чем больше познается, тем шире становятсяграницы непознанного. Установленные на определеном этапе развития наукизаконы, всегда явл. приближенными. По мере накопл. знаний, новыхэкспериментальных фактов, явлений и увеличения точности измерений появл-сяданые, не укладывающиеся в рамки имеющихся законов и эти законыпересматриваются.Есть и другая сторона этого вопроса. Для точной формулировки законовестествознания, в особ-ти физики, требуются новые определения и понятия,знание спец. разделов математики. Исааку Ньютону (1643-1727) для описаниязаконов механики потребовалось создать совршено новые для своего времениразделы высшей математики: дифференциальное и интегральное исчисление.Физики часто сталкивались с ситуацией, когда имевшегося математическогоаппарата оказывалось недостаточно для получения количественных формулировокполученного з-на и требовалось создавать спец. математически апарат. З-ныестествознания постулируются на основании наблюдаемых опытных фактов.Сначала идет процес накопл. знаний в опред. облти. Эти результатыанализируются и делается некоторое предположение. Это предположение невыводится из других законов. Оно возникает само по себе на основании опыта.Сделанное умозаключение, сформулированное в виде математической формулы,становится частью гипотезы. If последующие опыты подтверждают правильностьэтого предположения, оно становится з-ном.З-ны и Т. не абсолютны. Они развиваются по мере накопл. знаний.Фундаментальные законы естествознания описывают огромное кол-во явлений вразных областях. И все они подчиняются некоторым общим правилам. Рассмотримих.Во перв., законы сами по себе не меняются. Имено поэтому они и называютсяфундаментальными. Иначе никакая наука не могла бы развиваться. Но, надопомнить о том, что з-н написан для опред. облти явлений.Всякий раз, когда с опред. степенью точности подтверждается какой-либо з-н,можно утверждать, что з-н окончателен и ни какой результат его неопровергнет в той облти, для кот. он написан. однако может так случится, чтопоявление новых экспериментальных данных или теорий приведет к тому, что з-нокажется приближенным. иначе говоря, увел. точности измерений можетобнаружить неточность даже самых незыблемых законов.При формулировке законов необходимо задавать границы их применимости. З-ны иТ. должны описывать всю совокупность явлений в той облти, для кот. Онисформулированы. Они не должны противоречить известным фактам. более того,они обязательно должны предсказывать новые, неизвестные ранее явл-я.Наконец, никакой з-н не должен нарушать принцип причинности. Это знчит, чтонельзя что-то изменить в событии кот. уже случилось. Можно повлиять толькона будущее, но никак не на прошлое.В заключение отметим, что новые фундаментальные законы невозможно вывести врамках старых теорий. стремление некот. авторов сделать это не имеет подсобой никакого основания и зачастую связано лишь с большим желанием авторов»пооригинальничать» и внести свой «вклад в науку».

4. Материя, формы ее существования.В основе всех естественнонаучныхдисциплин лежит понятие материи, з-ны движения и изменения кот. изучаются. Взависим. от того, как мы определим это понятие, мы и будем расм-ватьпроявление различн. теорий. Для понимания естественнонаучных теорий, вчастности концепций современ. физики, приемлемым явл. определение, данноеВ.И. Лениным в монографии <материализм и эмпириокритицизм>. «Материя — естьфилософская категория для обозначения объективной реальности, кот.отображается нашими ощущениями, сущ-вует независимо от них. Материя — этооснова (субстанция, субстрат) всех реально существующих в мире св-в, связейи форм движения, бесконечное множество всех существующих в мире объектов исистем».В этом определении есть 2 основных момента. Во-перв., материясущ-вует объективно, независимо от нас, от чьего-то субъективного сознанияили ощущения. Во-вторых, материя копируется, отображается нашими ощущениямии, след., познаваема. Мы здесь исходим из материалистического единства мираиз первичности материи. движение, как формасуществования материи, ее важнейший атрибут. движение в самом общем виде -это всякое изменение вообще. Движение материи абсолютно, тгда как всякийпокой относителен. понять эту мысль проще всего при рассмотрении простейшихвидов движения. например, тело покоится относит. Земли, но относит. Солнцаоно движется. Формами существования материи явл. пространство и время.Материя неотъемлема от них. Современная наука оперирует такими структурнымиуровнями, как элементарные частицы и поля, атомы и молекулы,макроскопические тела, геологические системы, планеты и звезды, галактики иметагалактики; совокупности организмов, способных к воспроизводству и,наконец, общ-во. Мы будем изучать только первые структурные уровни- поля ичастицы, макроскопические тела. Различают ряд основных форм движенияматерии: механическую, физическую (включая тепловую, гравитационную, ядернуюи т.д.), химическую, биологическую, общественную. Высшие формы движениявключают в себя > низшие, но не сводятся только к ним. Так, ядерные процесыневозможно описать только формулами класич. механики. В настоящем курсебудут рассмотрены лишь простые формы движения материи — механическая,физическая и химическая. Для описания материи и ее движения необходимоввести количественные меры этих величин исходя из поставленных задач. Массаявл. количественной мерой материи и вводится как для микро- и макрообъектов,так и для полей. одной из количественных мер движения материи явл. эн-я.Она имеет много форм: механическая, тепловая, ядерная, химическая и т.д.поскольку материя не сущ-вует без движения, а движение без материи междуколичественными характеристиками меры и движения материи должна существоватьсвязь. Эта связь была установлена в начале нашего в. А. Эйнштейном(1879-1955) в работах по Т. отнсит-ти. Мы будем расм-вать 2 вида материи -в-во и поле. К первому отнесем элементарные частицы, атомы, молекулы, всепостроенные из них макросистемы. Ко второму отнесем особую форму материи,физическую систему с бесконечным числом степеней свободы. Примерамифизических полей могут служить электромагнитные и грав-ные поля, поляядерных сил, а также волновые поля.

5. ВЗАИМОДЕЙСТВИЕ. ПОЛЕ. ПРИНЦИПЫ БЛИЗКОДЕЙСТВИЯ И ДАЛЬНОДЕЙСТВИЯ. Первнач. в класич. механике утвердилась конц-я, что взаимдействие между телами происходит через пустое пространство, кот. не принимает участия во взаимодействии, передача взаимдейст. происходит мгновенно. По сути дела утверждалась возможность мгновеной передачи какого-либо воздействия от одного тела другому. При этом не оговаривался механизм этой передачи. Однако, даные представл. были откинуты, как не соответствующие реальным, после открытия и ислед. электрич. и магнитных полей. понятие поля в применении к электрическому и магнитному полям было введено в 30-х гг 19-го в. М. Фарадеем. Согласно концепции близкодействия, взаимодействующие тела создают в кажд точке окружающего их прост-ва особое сост.-поле, кот. проявляется в силовом воздействии на друг. тела, в эти поля помещенные. Экспериментально было показано, что взаимдействие электрически заряженных тел осущ-ется не мгновенно. Перемещение 1ой заряженной частицы приводит к изменению сил, действующих на друг. заряж. частицу не в тот же момент, а спустя некоторое время. В разделяющем частицы прост-ве происходит некоторый процес, кот. распространяется с конечной, хотя и очень большой скор-тью. Был сделан вывод, что имеется посредник, осуществляющий взаимдействие между заряженными частицами. Этот посредник был назван электромагнитным полем. каждая заряженная частица создает вокруг себя электромагнитное поле, действующее на друг. заряженные частицы. Скорость распространения электромагнитных волн не превышает скор. их распространения в вакууме, =ой 3(108 м/с. Тким обрзом, возникла новая конц-я — конц-я близкодействия. Согласно этой концепции, взаимдействие телами осущ-ется поср-вом тех или иных полей, непрерывно распределенных в прост-ве. Взаимодействие тел передается не мгновенно, а через некоторый промежуток времени. Скорость передачи взаимдейст. ограничена скор-тью света в вакууме.В современ. физике сущ-вует квантовая Т. поля. Согласно этой Т., люб. поле не непрерывно, а дискретно. Дискретность означает наличие некот. частиц поля-квантов. каждому полю соотв-уют свои частицы.4 вида взаимодействий и полей: Гравитационные взаимдейст. обеспечивают тяготение тел друг к другу. Слабые взаимдейст. ответственны за большинство распадов и превращений элементарн. частиц. Электромагнитные взаимдейст.-это взаимдействие заряженных тел. сильные взаимдейст. связываются протоны и нейтроны (нуклоны) в атомном ядре. поскольку поля заданы в кажд точке прост-ва, т.е. в бесконечном числе точек, для их описания требуется не конечное, а бесконечное число параметров (степеней свободы). Сказанное не означает, что для описания поля надо реально задавать бесконечное число параметров. Достаточно уст-ть з-н, позволяющий находить поле в кажд точке прост-ва. таковыми явл.: з-н всемирного тяготения для гравитационных полей, з-н Кулона для электрич. полей и з-н Био-Савара-Лапласа для магнитных полей.особой формой существования материи явл. волны. Волна представляет из себя процес распространения возмущения какого-либо физ. параметра в прост-ве. волны в упругих средах, кот. локализованы в самой среде, и волны (электромагнитные, грав-ные), не ограниченные средой.

6. Сост. сист., ее изм. Во времени. Простейшая формя движения материи — механическое движение (перемещение тел в прост-ве и времени). В естествознании для описания систем вводятся модели. Простейшей моделью, на кот. удобно изучать механическое движение, явл. материальная точка, т.е. тело, имеющее массу, но не имеющее геометрических размеров. тело можно заменить мат. точкой, if в рамках поставленной задачи можно пренебречь его размерами и формой. Раздел механики, в кот. описывается движение тела, и не вскрываются причины, его вызывающие, наз. кинематикой. Для описания движение тела, необходимо ввести систему отсч., относит. кот. задать его координаты, ввести динамические переменные, описывающие изменение положения тела во времени и ввести законы движения тела. Вообще говоря, сист. отсч. должна в себя включать систему тела, кот. мы считаем неподвижными и часы. С системой неподвижных тел необходимо связать систему коорд., например декартовых. Полож-е тчки в координатном прост-ве задается радиусом-вектором r(t). Полож-е тчки в прост-ве с течением времени меняется, и конец радиуса-вектора вычерчивает линию, кот. наз. траекторией движения. траекторию можно разбить на бесконечно малые участки — dr. поскольку перемещение dr, бесконечно мало, оно лежит на траектории движения. Время dt, за кот. происходит это перемещение, тоже бесконечно мало. Перемещение dr и время dt связаны друг с другом при помощи динамического параметра-мгновеной скор., определение кот.: ((t)=dr(t)/dt (9.1). Т.о, dr=(dt, след., направл. мгновеной скор. совпадает с направлением элементарного перемещения dr. По правилу сложения векторов сумма всех dr + r0 даст нам вектор r. Но, операция суммирования по бесконечно малым величинам наз. интегрированием. вычисление значения r(t), в люб. момент времени. r(t)=r0+ ‘интеграл от t0 до t'(((t)dt) (9.2). ускорение, кот. тоже явл. векторной величиной и тоже может зависеть от времени и коорд.: a(t)=d((t)/dt (9.3). ==> d((t)=a(t)dt. If ф-я a(t) известна, то с ее помощью можно найти скорость тела в люб. момент времени, а зная ее, при помощи (9.2) можно найти полож. тела в люб. момент времени. ((t)=(0+ ‘интеграл от t0 до t'(а(t)dt) (9.4), r(t) = r0 +’интеграл от t0 до t'(((0 +’интеграл от t0 до t'(а(t)dt))dt) или r(t)=r0+(0(t-t)+ ‘интеграл'(‘интеграл от t0 до t'( а(t)dt)dt) (9.5). В этих формулах (0 — начальная скорость тела, т.е. его скорость в момент времени t0. Т.о, if нам известны начальное полож. мат. тчки — r0 и начальная скорость-(0, а также зависимость вектора скор. или вектора ускорения от времени, можно найти координаты системы в люб. последующий момент времени -r(t). В ряде случаев требуется найти не только полож. тела, но и тот путь, кот. оно пройдет. Пройденный путь есть скалярная величина, она обозначается S и численно =а длине траектории. Чтобы найти пройденный путь S необходимо просуммировать длины вектора dr, т.е. провести интегрирование по модулю вектора dr: S=’интеграл от t0 до t'(dr)= ‘интеграл от t0 до t'(v(t)dt) (9.6).

7. Осн. положения механики Галилея. Все Т., созданные до становления современ. физики, базировались на принципе, «Природа не терпит разрывов». Изменение состояния системы происходит не мгновенно, а плавно. взаимдействие тел происходит мгновенно. З-ны физики всегда базируются на опытах, экспериментах. Имено в рамках такого подхода Галилей создал основы класич. механики. Напомним, что в основе механики Аристотеля, доминировавшей в тот период, лежало утв., что скорость тела ~ приложенной силе: v~F. Галилей доказал неверность. осуществил эксперимент в ходе кот. он определял время, необходимое для падения тел с вершины Пизанской башни. Возьмем несколько шаров одинакового размера, изготовленных из разного в-ва. Они имеют разный вес. Вес тела хар-зует силу тяготения, действующую на тело со стороны Земли. Сила тяготения, действующая на тело =а его весу. If справедливо утв. Аристотеля, то разные тела с разным весом должны обладать разными скоростями падения и, соответственно, достигать пов-ти земли при бросании с башни за разные промежутки времени. Однако, эксперименты, проведенные с разными телами показали, что они достигали пов-ти земли за практически одинаковые промежутки времени.Вывод однозначен. Скорость тела не опр-ся приложенной силой. Приложенной силой опр-ся какой-то другой динамический параметр. Галилею потребовалось много лет и много усилий, чтобы выяснить, что же это за параметр. В этой облти наиболее известны его эксперименты с движением шаров по наклонной плоскости. Шары скатывались по наклонной плоскости, длина кот. и высота были заданы. В ходе опыта Галилей определял путь S, проходимый телом в зависим. от времени t. Им был установлен з-н, являющийся частным случаем 2го з-на Ньютона. Путь, проходимый телом квадратично зависит от времени: S=v0t + (at^2)/2, где константа a(ускорение) прямо ~ высоте h и обратно ~ длине пути S. Начальная скорость тела — (0 в его опытах могла меняться. В опытах Галилея ускорение определялось ускорением свобод. падения: a~gh/s. Анализируя проводимые эксперименты, Галилей пришел к выводу о существовании з-на инерции. действительно, if устремить длину основание наклонной плоскости к бесконечности, ускорение будет стремиться к нулю, знчит, за =ые промежутки времени тело будет проходить =ые отрезки пути и скорость тела будет пост.. Тело будет само по себе двигаться по инерции. Кроме экспериментов Галилей юзал умозрительные заключения. Он рассмотрел поведение тел и живых существ внутри корабля. Их поведение не зависит от того, стоит корабль у причала или двигается по спокойной воде с пост. скор-тью. Вывод: if корабль будет двигаться с пост. скор-тью, то находясь внутри корабля невозможно определить, движется он или стоит.

8.Принцип отнсит-ти Галилея. Преобразования Галилея. Галилей ввел понятие инерц. системы отсч., в кот. тело сохраняет сост. покоя или =мерного прямолинейного движения, if на него не действуют друг. тела (силы).Принцип отнсит-ти Галилея: все физические законы не меняются (инвариантны) в разных инерц. сист. отсч.. или все законы механики инвариантны при применении к ним преобр. Галилея. Для перехода из 1ой инерц. системы отсч. в друг. Галилей ввел преобр.. Пусть имеется инерциальная сист. отсч., полож. тел в кот. задается декартовыми координатами. например, точка А на рис. 10.3. Кроме системы коорд. XYZ (обозначают К), может быть и другая инерциальная сист. коорд., например, X’Y’Z’ (назовем ее К’). Инерциальная сист. коорд. К’ движется с пост. скор-тью u относит. системы К. Пространство изотропное, в нем не сущ-вует выделенного направл-я, поэтому удобно выбрать направл. оси OX совпадающим с направлением скор. u. Т.е. сист. К’ движется вдоль оси OX системы отсч. К. Полож-е тчки А в сист-е К задается вектором r(x,y,z) или его проекциями на оси OX, OY и OZ, кот. равны, соответственно, x, y и z. Полож-е той же тчки в сист-е К’ задаются координатами x’, y’ и z’. Связь между x, y, z и x’, y’, z’ дается преобразованиями Галилея: x’=x+ut; y’=y;z’=z; t’=t. Дополнительно к преобразованиям коорд. введено преобразование времени (конц-я дальнодействия). Инвариантность означает независимость, неизменность относит. каких-либо физических усл-ий. В математике под инвариантностью понимается неизменность величины относит. каких-либо преобр.. Рассмотрим, какие параметры не меняются при преобразованиях Галилея, т.е. явл. инвариантами этих преобр.. первый-время. При переходе от 1ой инерц. системы отсч. к другой не меняется как само время t=t’, так и длительность какого-либо события ‘дельта’t : ‘дельта’t’= t’2 -t’1 = t2 -t1 = ‘дельта’t (10.2) помимо времени, неизменным остается расстояние между двумя точками. Обозначим расстояние между точками А и В через l в сист-е K и l’ в сист-е K’. Координаты этих точек, соответственно, xA, yA, zA, xB, yB, zB в сист-е K и x’A, y’A, z’A, x’B, y’B, z’B в сист-е К’. Расстояние между точками опр-ся их координатам по теореме Пифагора: l’ = ‘корень'( (x’A-x’B)^2 + (y’A-y’B)^2 + (z’A-z’B)^2 ) = ‘корень'( (xA + vt — xB -vt)^2 + (yA-yB)^2 + (zA-zB)^2 ) =l. (10.3) Продифференцируем по времени соотношения (10.1) и получим преобр. Галилея для скоростей: V’x=dx’/dt=dx/dt + u=Vx+u; V’y=dy’/dt=dy/dt=Vy; V’z=dz’/dt=dz/dt=Vz; (10.4) Продифференцируем по времени и получим з-н преобр. ускорений при переходе из 1ой инерц. системы отсч. в друг.: a’x=dV’x/dt=dVx/dt + du/dt=dVx/dt=ax; a’y=dV’y/dt=dVy/dt=ay; a’z=dV’z/dt=dVx/dt=ax; (10.5). Из этих выражений видно, что все 3 проекции ускорения на оси коорд. остаются неизмен. при переходе из системы отсч. К в К’. Тким обрзом, ускорение тоже явл. инвариантом преобр. Галилея. З-н сохранения масы был сформулирован уже после Галилея и Ньютона. Но, добавим, что в класич. механике маса тела не зависит от выбора системы отсч. и также явл. инвариантом преобр. Галилея.

9. З-ны класич. механики и их инвариантность относит. преобр. Галилея. первый з-н Ньютона. Всякое тело в инерц. сист-е отсч. сохраняет сост. покоя или =мерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это сост.. 2й з-н Ньютона. Ускорение тела прямо пропорционально сумме сил, действующих на него и обратно пропорционально его массе. Запишем этот з-н в векторной форме с учетом кинематических соотношений: ‘сумма’F(вектор)(t)=ma(вектор)(t)=mdv(вектор)(t)/dt=m(d^2)r(вектор)(t)/d(t^2 ) (10.6.a); ‘сумма’F(вектор)(t)= mdv(вектор)(t)/dt=d(mv(вектор)(t))/dt=dP(вектор)(t)/dt (10.6.б). З-н Ньютона, записанный в виде (10.6.а) или (10.6.б) с мат. тчки зрения имеет вид ДУ. любая из формулировок (10.6.а,б) 2го з-на Ньютона наз. основным уравнением динамики. Решение этого уравнения явл. осн. задачей динамики (по известному закону движения тела r(t) найти действующие на это тело силы, в обратной задаче по известной зависим. действующих сил от времени ‘сумма’F(t) требуется найти з-н движения тела r(t)). 3й з-н Ньютона. Силы, с которыми взаимодействуют тела равны по величине, противоположны по направл-я и направлены вдоль линии взаимдейст.. Этот з-н утверждает, что силовое воздействие на тело носит хар-ер взаимдейст.. Этот же з-н утверждает, что взаимдейст. всех тел явл. центральными. З-н всемирного тяготения, открытый Ньютоном, иногда называют четвертым з-ном Ньютона. F(вектор)=G(m1)(m2)/r^2 * r(вектор)/r (10.7), где (r(вектор)/r ) единичный вектор, направленный вдоль линии взаимдейст., определяющий направл. гравитационной силы F(вектор). тело, двигающееся прямолинейно и =мерно относит. системы отсч. К, вследствие уравнений (10.4) движется также прямолинейно и =мерно относит. системы отсч. К’. Это обозначает, что первый з-н Ньютона справедлив во всех инерц. сист. отсч.. В сист-е коорд. К форма записи 2го з-на Ньютона опр-ся уравнениями (10.6). поскольку, ускорение и маса инвариантны относит. преобр. Галилея, ур-е (10.6) одинаково записывается в различн. инерц. сист. отсч.. поскольку, величина силы не меняется при переходе от 1ой инерц. системы отсч. к другой, третий з-н Ньютона тоже инвариантен относит. преобр. Галилея. 4й з-н не нуждается в доказательстве инвариантности относит. преобр. Галилея, поскольку расстояния, масы и силы не меняются при переходе из 1ой инерц. системы отсч. в друг.. ТО., все законы Ньютона инвариантны относит. преобр. Галилея. Это знчит, что они справедливы и записываются одинаковым обрзом во всех инерц. сист. отсч..

(28) часто, кроме круговой частоты колебаний ‘амега’=2’Пи’/T используют циклическую частоту ‘ню’=1/T. Частота измеряется в Герцах, 1 Гц — это 1 колебание в секунду. В общем случае вместо смещения тчки среды из положения равновесия можно ввести люб. «колеблющийся» параметр. Для звуковых волн таким параметром явл. давление газа в даной точке прост-ва. Звуковые волны — продольные волны и физически сводятся к процессу распространения в газе колебаний давления. Эти колебания обычно создают путем колебаний мембраны перпендикулярно ее плоскости. Возникающие перепады давления и представл. собой звуковую волну. Область частот, кот. слышит человеческое ухо лежит в диапазоне 20-20000 Гц. Другим чрезвычайно важным видом волн явл. электромагнитные волны. Электромагнитные волны могут возникать и распространятся в пустом прост-ве, т.е. в вакууме. Из уравнений Максвелла след., что переменное магнитное поле создает вокруг себя в прост-ве переменное электрическое поле. В свою очередь, переменное электрическое поле создает вокруг себя в прост-ве переменное магнитное поле. Этот процес приводит к появлению в прост-ве некоторой волны — электромагнитной волны. Эта волна явл. поперечной. Напряженности электрического и магнитного полей волны перпендикулярны друг другу и направл. распространения волны. На рис.18.5 показаны напряженности электрического и магнитного полей в бегущей волне.Особенностью электромагнитных волн явл. то, что для их распространения не требуется никакой среды. Переменные электромагнитные поля могут распространяться в вакууме. Для количественного описания волн вводят 2 понятия: интенсивность волны и объемную плотность энергии волны. Интенсивность волны — это средняя по времени эн-я, переносимая волнами через единичную пл-дь, параллельную волновому фронту, за единицу времени. Объемная плотность энергии — это эн-я волн, приходящаяся на единицу объема. Волна — это процес распространения колебаний в прост-ве (в упругой среде , как это имеет место для звуковых волн, или в вакууме, как это имеет место для электромагнитных волн). Энергия колебаний опр-ся амплитудой и частотой. Она ~ квадрату амплитуды колебаний. В сист-е СИ интенсивность волны выражается в Вт/м2. Без вывода приведем выражения для интенсивности и скор. звуковой и электромагнитной волн. Для звуковой волны: J = 1/2 * pvA^2w^2 Vii=sqrt(E/p); Vi=sqrt(G/p) где А — амплитуда колебаний среды, ‘амега’ — частота, (, (//, (( — скорость волны, продольной и поперечной, ‘ро’ — плотность среды, в кот. распространяется звуковая волна, E — коффициент Юнга, G — коэф. сдвига. Распространение звука в упругой среде связано с объемной деформацией. Поэтому давление в кажд точке среды непрерывно колеблется с частотой ‘амега’ вокруг некоторого среднего значения. Давление, вызванное звуковой деформацией среды наз. звуковым давлением. Наше ухо воспринимает звуковые давления неодинаково на разных частотах. Область частот ,кот. воспринимает ухо лежит в диапазоне 20 — 20000 Гц. наибольшей чувствительностью ухо обладает в диапазоне частот около 1000 Гц. На этих частотах ухо способно воспринимать звуки, звуковое давление в кот. отл-ся на 7 порядков. Для интенсивности электромагнитной волны справедливо: J=1/2*EoHo=1/2*sqrt(E*Eo/M*Mo)*Eo^2=1/2*sqrt(M*Mo/E*Eo)*Ho^2; где Eо и Hо амплитуды напряженности электрического и магнитного полей, ‘эпсилонт'(E) и ‘мю'(M) диэлектрическая и магнитная проницаемости среды, ‘эпсилонт’о (Eo) и ‘мю’о (Mo) диэлектрическая и магнитная проницаемости вакуума — постоянные, введенные в сист-е СИ. Скорость распространения электромагнитных волн в среде =а V=1/sqrt(EMEoMo);, В вакууме E=M=1, поэтому скорость электромагнитной волны в вакууме будет =а c=1/sqrt(EoMo) = 3*10^8 m/c. Как видно, она расна скор. света в вакууме — с, что не удивительно, поскольку свет явл. электромагнитными волнами.

(29) основы квантовой механики были заложены в работах конца 19-го, начала 20-го веков. В этих работах вскрывались непримиримые противоречия между принципами и законами класич. физики и накопленными к тому времени экспериментальными фактами. Сначала рассмотрим эксперименты по излучению и поглощению света. В рамках класич. физики и электродинамики Максвелла излучать электромагнитные волны могли лишь заряженные частицы (например электроны), движущиеся с ускорением. If ускорение заряженной частицы изменяется по гармоническому закону с частотой ‘амега’ (см. формулу (18.3)), то излучать такая частица будет на той же частоте ‘амега’, т.е. в ее спектре будет присутствовать лишь одна длина волны (или частота). Такие спектры называются линейчатыми. If же ускорение частицы изменяется по любому закону, отличному от (18.3), или не меняется вовсе, то спектры излучение таких частиц будут сплошными или непрерывными, т.е. в них будут присутствовать волны со всеми длинами (или частотами) в некотором диапазоне. На рис.19.1показаны экспериментально наблюдаемые спектры излучения нагретого твердого тела и разреженного газа. На рис.19.1 по горизонтали отложены длины волн, на кот. излучается свет, а по вертикали — относительные интенсивности излучения в условных единицах. If спектр излучения нагретого тела на первый взгляд не противоречит класич. Т. излучения, то спектр излучения разреженных газов не может быть объяснен с позиций класич. электродинамики. исследование спектра излучения водорода показали, что длины волн излучения подчиняются простой закономерности: 1/lambda=R(1/n1^2-1/n2^2), где R(((10967776(((5(м-1) — постоянная Ридберга, названная в честь шведского физика Ю.Р.Ридберга((1854-1919), имеющая смысл граничной длины волны между сплошным и линейчатым спектром в минус 1ой степени, n1 и n2((( натур. числа, причем n1(((n2. Отметим важный момент. Формула, описывающая спектр излучения водорода содержит набор целых чисел. В квантовой физике имено целые числа играют важную роль при описании поведения микросистем. попытки получить что-либо подобное с позиций класич. физики были просто бессмысленны. В конце прошлого в. ряд ученых сделали попытки получить формулы, описывающие излучение нагретых твердых тел. Есcно, что в основе всей теори лежали классические представл.. Рэлею в 1900-ом году и Джинсу в 1904-ом году удалось вывести такую формулу, ее график приведен на рис.19.1 пунктиром. В инфракрасной облти спектра эта зависимость хорошо согласуется с экспериментом, в облти видимого света она расходится с экспериментом очень сильно, а в ультрафиолетовой облти — катастрофически. Вывод формулы Релея-Джинса был проведен в рамках класич. физики безупречно, а результат получился абсурдным, поскольку излучаемая нагретым телом эн-я должна была по этой формуле стремится к бесконечности. Неспособность класич. физики объяснить излучение нагретого тела назвали «ультрафиолетовой катастрофой«. Существовали еще друг. эксперименты по фотоэффекту, проведенные в 1888-1890 гг нашим соотечественником А.Г.Столетовым (1839-1896). идея эксперимента заключалась в след-м: световое излучение направлялось на пластину метала — катод, находящуюся в стеклянной откачанной колбе (рис.19.2). В этой же колбе анод. между электродами прикладывалось напряжение требуемой полярности. свет вырывал из кадода электроны, кот. затем попадали на анод. Меняя разность потенциалов между катодом и анодом можно было определить энергию вырванных электронов и исследовать зависимость этой энергии от параметров электромагнитного излучения. Для определения кин. энергии вырванных электронов необходимо было приложить между анодом и катодом отрицательное напряжение U. Когда сумма кин. и пот. энергий электрона оказывалась отрицательной, электрический ток, создаваемый летящими электронами прекращался. mv^2/2-eU<=0, => mv^2/2=eUmin. Тким обрзом, измеряя минимальное задерживающее напряжение между анодом и катодом, можно было найти кинетическую энергию вылетевших электронов. Опыты Столетова показали, что эн-я вырванных из катода электронов линейно связана с частотой падающего света. Из класич. же Т. следовало, что их эн-я должна быть пропорциональной квадрату амплитуды напряженности электрического поля падающей электромагнитной волны или интенсивности этой волны. Тким обрзом, наблюдалось явное расхождение класич. Т. с экспериментом. В основе «классиче ских» теорий теплового излучения и фотоэффекта лежало предположение о непрерывности процеса излучения и поглощения электромагнитных волн, т.е. считалось, что могут поглощаться и испускаться любые порции энергии. Обойти «ультрафиолетовую катастрофу» удалось М.Планку (1858-1947). В 1905 году им был сделан доклад на заседании Берлинской Академии наук, в кот. он предложил правильную формулу, качественно и количественно объясняющую излучение нагретых тел. М.Планк опирался на гипотезу, что свет испускается порциями — квантами с энергией, =ой E=hV где h((((6,6254(((0,0002)(10-34 Дж(с — постоянная Планка, а v — частота электромагнитного излучения. Есcно, что гипотеза Планка противоречила классическим представлениям Т. электромагнитного излучения — электродинамики Максвелла и первоначально принималась как абстрактная гипотеза. Гипотезу Планка развил А.Эйнштейн. Он предположил, что электромагнитное излучение не только испускается, но и поглощается порциями — квантами. В рамках этого предположения Эйнштейн смог легко объяснить опыты по фотоэффекту. действительно, из з-на сохраненгия энергии след., что поглощенный квант света с энергией E=hv тратится, во-перв., на работу выхода Aв, необходимую для вырывания электрона из метала, и, во-вторых, на сообщение электрону кин. энергии. В предположении, что 1 квант энергии может выбить из металлла только 1 электрон, з-н сохранения энергии записывается: Hv=As+mv^2/2; Это ур-е сегодня наз. уравнением Эйнштейна для фотоэффекта. Из него однозначно след., что эн-я фотоэлектронов связана линейной зависимостью с частотой падающего света. позднее А.Эйнштейн в рамках этой гипотезы создал квантовую Т. излучения и поглощения света, кот. явл. основой квантовой электродинамики и квантовой электроники.

(30) Строение атома, опыт Резерфорда В начале нашего в. было известно, что сущ-вует радиоактивный распад атомов, в ходе кот. из атома вылетают положительно и отриц-но заряженные частицы (в том числе электроны). На основании этих экспериментов предполагалось, что положительный заряд распределен =мерно в пределах шара, радиусом порядка a ~ 10-10 м, а электроны находятся внутри этого шара и взаимодействуют с отдельными его частями и друг с другом по закону Кулона. Эта модель атома была предложена в 1903 г. английским физиком Д.Д.Томсоном (1856-1940) и часто называлась моделью «пудинг с изюмом». однако, вплоть до 1911 г., до опыта Э.Резерфорда (1871-1937), не было никаких гипотез, объясняющих линейчатые спектры излучения разреженных газов. Резерфорд поставил опыт по рассеиванию ‘альфа'(((частиц (ядер атома гелия), кот. рождались при радиоактивном распаде некот. эл-тов. Все ‘альфа'(((частицы вылетали с практически одинаковыми скоростями порядка 107 м/с, проходили сквозь тонкую металлическую фольгу (см.рис.19.3), отклонялись от своего первоначального направл-я и регистрировались на экране из сернистого цинка в виде световых вспышек, видных под микроскопом. В соответствии с моделью атома Томсона ‘альфа'(((частицы должны были при каждом столкновении с атомом отклоняться на очень небольшие углы, порядка 0,01О(0,1О. В результате многочисленных столкновений с атомами при пролете сквозь фольгу ‘альфа'(((частицы должны были отклониться на углы порядка 1О(10О. Частиц, отклонившихся на большие углы быть не могло, частиц, совсем не отклонившихся должно было быть очень мало. Что же наблюдалось в действит-ти? На опыте оказалось, что (99(( частиц вообще не отклонились от своего направл-я, т.е. не сталкивались с атомами, пролетая сквозь фольгу. Это значило, что ((99(( из числа отклонившихся частиц при пролете сквозь фольгу испытали лишь однократное столкновение с атомами. Тким обрзом, в опыте Резерфорда фактически наблюдалось столкновение ‘альфа'(((частицы с одиночным атомом. Оказалось, что ‘альфа'(((частицы, столкнувшиеся с атомом отклонялись в среднем на гораздо большие углы, чем ожидалось. Среди рассеянных частиц были отклонившиеся на очень большие углы, вплоть до 180О. Угол рассеяния зависит от силы взаимдейст. ‘альфа'(((частицы с атомом. Эта сила — сила Кулона очень сильно зависит от расстояния: Fmax=kq’альфа’Qr^-2. В этой формуле k — константа, зависящая от выбора системы единиц, q’альфа’ — заряд ‘альфа'(((частицы, Q — положительный заряд, имеющийся в атоме. В рамках модели Томсона ‘альфа'(((частицы должны пролетать сквозь атомы. Максимальная сила их взаимдейст. с атомом будет на границе атома при r=a, т.е. Fmax=kq’альфа’Qa^-2 (на меньших расстояниях взаимдействие будет происходить не со всем зарядом Q, а лишь с его частью, уменьшающейся быстрее, чем r2. Тким обрзом, очень больш знач. силы Кулона может быть достигнуто лишь в том случае, когда положительный заряд атома будет сосредоточен в очень маленьком ядре размером RЯ~10-14 м, т.е. в 10000 раз меньше размеров атома. If в этом ядре будет сосредоточена практически вся маса атома, то при столкновении с таким ядром ‘альфа'(-((частицы будут менять траекторию за счет кулоновских сил взаимдейст.. Из опыта Резерфорда следовало, что атом имеет иную структуру, чем по Томсону. В атоме имеется очень маленькое положительно заряженное ядро, вокруг кот. вращаются электроны. Масса электронов мала по сравнению с масой ядра. Однако, эта модель атома противоречила класич. электродинамике. В чем же сост. это противоречие? чтобы электроны не упали на ядро, они должны вращяться вокруг него подобно планетам в Солнечной сист-е. Однако вращаясь, они испытывают ускорение, и, в соответствии с законами класич. электродинамики, должны излучать энергию в виде электромагнитных волн. Излучая энергию электрон сам должен был ее терять и приближаться к ядру. Через очень короткое время ~ 10-8 с электрон должен был бы упасть на ядро и атом, соответственно, прекратить свое сущ-ние. (31) Корпускулярно — волновой дуализм. Физиками были предприняты попытки создания теорий, кот. могли бы объяснить эксперименты Э. Резерфорда. Наибольший след оставила Т. Н. Бора, созданная в 1913 г. В ее основе лежат 2 постулата. первый постулат. Из всех возможных орбит электрона в атоме осуществляются только те, кот. подчиняются требованиям дискретности, т.е. не непрерывному распределению энергии, а дискретному, разрывному. Электрон, находящийся на такой орбите не излучает, несмотря на то, что он двигается с ускорением и с тчки зрения класич. электродинамики должен излучать электромагнитные волны. Орбиты, двигаясь по кот , электрон не излучает , называют стационарными. Условие для стационарных орбит Н.Бор получил исходя из постулата М.Планка о квантованности энергий электромагнитного излучения. Согласно этому постулату, эн-я системы (гармонического осциллятора у М.Планка и электрона в атоме у Н.Бора) =а: En=nhw/2П=nhv (cм. Формулу 19.3 ). Этот постулат определяет правило квантования момента кол-ва движения электрона Ln в соответствии с формулой 19.3. Его знач. должно быть равным: Ln = mvr = nh/2п, где m, v и r- маса, скорость и радиус орбиты электрона, h — постоянная Планка, а n натур. число, принимающее значения 1,2,3… первый постулат определил важное направл. во всей квантовой физике. Он ввел понятие квантованности параметров, описывающих движение частицы. Эти параметры : скорость, импульс или кол-во движения, момент кол-ва движения, радиус орбиты и, конечно, эн-я не могут принимать непрерывный набор значений, как это имело место в класич. физике. Они могут принимать только некоторый набор дискретных значений. 2й постулат утверждал: при переходе электрона с 1ой стационарной орбиты на друг. излучается или поглощается квант энергии. Энергия кванта =а разности энергий тех стационарных состояний между

которыми произошел переход. If энергию одного состояния обозначить через En, а другого через Em, то излучается квант с частотой Wnm, где Wnm удовлетворяет условию: 2ПhWnm =En-Em.(w-омега,П — пи). Введенные постулаты позволили Н.Бору получить дискретный спектр излучения атома и для водорода вывести формулу 19.1. слабой стороной Т. Н.Бора была ее внутренняя противоречивость. Она не была ни последовательно класич., ни последовательно квантовой Т.. В силу этого, она не позволяла объяснять спектры > сложных, чем водород атомов. Она явл. только переходным шагом на пути к созданию последовательной Т., объясняющей поведение микросистем. Т. Бора была крупным шагом в развитии атомной и всей квантовой физики. В первую очередь она показала неприменимость представлений класич. физики к микросистемам, в том числе к атому и необходимость введения квантованности параметров микросистемы. Ограничения Т. Бора показали неприемлимость классического подхода к описанию микросистем. Требовалось выдвинуть новую, глобальную идею, на основе кот. можно было бы получить целостную, непротиворечивую Т. микромира. такая идея была выдвинута только через 11 лет после создания Т. Бора. В 1924 году франц. ученый Луи де Бройль выдвинул гипотезу о двойственности природы микромира. Он предположил, что микрочастицы обладают одновремено свойствами частиц и волн. Это полож., неприемлемое с тчки зрения класич. физики, оказалось универсальным при описании не только микро, но и макромира. Л.д.Бройль предположил что все системы, в том числе и микрочастицы, обладают как волновыми, так и корпускулярными свойствами. Согласно предположению, любому телу, с масой m, движущемуся со скор-тью v , соотв. волна: lambda=h/mv (19.4) Формулу 19.4 легко получить применительно к квантам света. Энергия кванта, кот можно приписать массу m, опр-ся с 1ой стороны как Е=mc2 , с другой стороны она =а E=hv-hc/lambda. Приравнивая правые части этих формул и учитывая, что для фотона скорость распространения v =а скор. света с, получаем формулу 19.4. движение тела в прост-ве и времени происходит также, как распростран волны с длиной lambda. вопрос о корпускулярно-волновом дуализме был предметом дискуссий в течении нескольких десятков лет. Первнач. волны Л.де Бройля предполагались как наглядно — реальные волновые процесы типа электромагнитных волн. позднее волны Л.де Бройля трактовались как некоторые вероятностные волны, описывающие движение частиц. В настоящее время можно предложить следующую трактовку корпускулярно-волнового дуализма. При распространении частицы в прост-ве ее движение описывается волной. При взаимодействии частицы с другими системами она проявляется как корпускула — частица. Проще всего это проследить на примере фотонов. Электромагнитные волны распространяются в прост-ве по законам распространения волн. Когда электромагнитные волны взаимодействуют с телами (примером может служит фотоэффект), то сразу же проявляются чисто корпускулярные св-ва. Электромагнитные волны поглощаются как частицы с опред. энергией.

(32) ОТВЕТ ОТСУТСТВУЕТ! (Волновая ф-я; ур-е Шредингера).

(33) ОТВЕТ ОТСУТСТВУЕТ! (Соотношение неопределенностей Гейзенберга).

внимание! В след-м разделе некоторые вопросы перекрываются. Для гарантированно-хорошего ответа на экзамене след. ознакомится с всеми 3 вопрсами (? 34, ? 35, ? 36).

(34) В настоящее время конц-я самоорганизации получает все большее распростран не только в естествознании, но и в соц-но гуманитарных разделах наук. большинство наук изучает процесы эволюции систем и они вынуждены анализировать механизмы их самоорганизации. Мы под самоорганизацией будем подразумевать явл-я, процесы , при кот. системы (механические, химические, биологические и т.д.) переходят на все > сложные уровни, характеризуемые своими законами, кот. не сводятся только к законам предыдущего у-ня. Такие примеры мы расматривали в предыдущих разделах. Концепция самоорганизации в настоящее время становится парадигмой. Обычно под парадигмой в науке подразумевают фундаментальную Т., кот. применяется для объяснения широкого круга явлений, относящихся к соответствующей облти ислед.. Примерами таких теорий могут служить классическая механика Ньютона, эволюционное учение Дарвина или квантовая физика. Сейчас знач. понятия парадигмы еще больше расширилось, поскольку оно применяется не только к отдельным наукам, но и к междисциплинарным направл-ям ислед..

(35) Принцип обратной Связи. Типичным примером таких междисциплинарных парадигм явл. возникшая полвека назад кибернетика и появившееся четверть в. спустя синергетика. Под синергетикой в настоящее время подразумевают область научных ислед., целью кот. явл. выявление общих законмрностей в процессах образования , устойчивости и разрушения упорядоченных временных и пространственных структур в сложных неравновесных сист. различной природы (физических, химических биологических , экологических, социальных).

(36) Синергетика и Кибернетика. Определим, что лежит в основе кибернетики и синергетики. Кибернетика в основном занималась анализом динамического равновесия в самоорганизующихся сист.. Она опиралась на принцип отрицательной обратной связи , сглсно кот всякое отклонение системы корректируется управляющем устройством после получения сигнала информации об этом. Мы с вами сталкивались с таким примером, когда расматривали знаки в уравнениях Максвелла, связывающих магнитные и электрические поля. Отрицательный знак в законе Фарадея и означал, что воздействие корректируется в сторону его уменьшения. Другой пример. Сам отец кибернетики Н.Винер рассказывал, как возникла эта наука. Она возникла, когда стали изобретать самонаводящиеся зенитные системы. В этих сист. встретились с такой ситуацией, когда неправильно поданный корректирующий сигнал приводил к выходу из строя всей системы наведения. В общем речь шла о том, что в сист-е, развивающейся по заданным законам, связь должна быть отрицательной. Пояснение вышесказанному дается рис. 5.1. В синергетике исследуются механизмы возникновения новых состояний, структур и форм в процесе самоорганизации, а не сохранения или поддержания старых форм. Она опирается на принцип положительной обратной связи, когда изменение, возникшее в сист-е, не подавляется или корректируется, а наоборот, накапливаются и приводят к разрушению старой и возникновению новой системы. С тчки зрения приведенного Н.Винером примера процес саморазрушения зенитного комплекса мог быть описан с синергетических позиций. В то время этот процес считался сугубо отрицательным и его старались подавить. Для хар-еристики самоорганизующихся процесов применяют различн. термины, начиная от синергетических и кончая неравновесными и даже автопоэтическими или самообновляющимися. Однако, все они выражают 1 и туже идею. В дальнейшем у нас речь пойдет о самоорганизующихся сист., кот. явл. открытыми системами , находящимися вдали от тчки термодинамического равновесия. Идеи эволюции систем (космогонические, биологические, физические) получили широкое признание в науке. однако,вплоть до настоящего времени, они формулировались интуитивными понятиями. Терминологический и научный подход развивается только в настоящее время. В раних теориях эволюций основное внимание обращалось на воздействие окружающей среды на систему. Мы > подробно это рассмотрим в Т. эволюции Дарвина. В дарвинской Т. Т. происхождения новых видов растений и животных путем ественого отбора главный акцент делался на среду, кот. выступала в кач. определяющего фактора. разумеется, внешние усл-я среды оказывают огромное влияние на эволюцию, но это влияние не в меньшей степенизависит также и от самой системы, ее состояния и внут. предрасположенности. Приведем 2 примера. У нас есть водяной пар, при его охлаждении он переходит в новую структуру в виде кристаллов.Систем > организованных, чем хаотически двигающиеся молекулы воды. Но, этот процес как выясняется, может происходить только тгда, когда в самой среде есть дополнительные центры кристаллообразования. Т. е. необходимым усл. явл. сама среда и ее взаимосвязи. Другой пример. Лазеры. В лазерах хаотическое спонтанное излучение превращается в строго организованное индуцированное, следствием чего и появл. монохроматическое излучения. В этих примерах мы не использовали точные хар-еристики упорядоченности или самоорганизованности структуры. В след-м разделе мы введем меру упорядоченности структуры энтропию и свяжем с ней протекание процесов. С тчки зрения парадигмы самоорганизации стало ясным, что усл. развития не только живых, но и динамических систем вообще явл. взаимдействие системы и окружающей среды. Только в результате такого взаимдейст. происходит обмен веществом, энергией и информацией между системой и ее окружением. Благодаря этому возникает и поддерживается неравновесность, а это в свою очередь приводит к спонтанному возникновению новых структур. Таких как кристаллы или лазерное излучение.

(34) Самоорганизация как основа эволюции. Тким обрзом , самоорганизация возникает как источник эволюции систем, так как она служит началом процеса возникновения качественно новых и > сложных структур в развитии системы. Чтобы понять, почему самоорганизация выступает в основе эволюции, необходимо сказать несколько слов о флуктуациях и хаосе. рассмотрим такую систему, как газ. Молекулы газа двигаются случайно, хаотично. Однако, в опытах с броуновским движением мы видим, что случайные, хаотичные движения молекул (микросистем) могут привести и к коллективному движению макроскопических частиц. Флуктуации представл. собой случайные отклонения системы на микро уровне. Но результат их действия может сказаться и на макро уровне, причем непредсказуемым обрзом. В критич. точке эволюции ,как правило, открывается несколько возможностей. Какой путь при этом выберет сист., в значит. степени зависит от случайных факторов. И в целом поведение системы нельзя предсказать с полной достоверностью. Мы с вами расматривали этот вопр в разделе Физика возможного. Мы даже указали границы случайности в поведении системы. В микромире выбор поведения системы определен только с точностью до соотношения неопределенностей Гейзенберга. фактически мы показали, что в самой сист-е заложен хаос, неопределенность. И эта неопределенность в критических точках поведения системы может привести к развитию новой структуры с не предсказанными свойствами.

(37) ЕСТЕСТВЕННО — НАУЧНАЯ И ГУМАНИТАРНАЯ КУЛЬТУРЫ Ученые и специалисты насчитывают > 170 определений понятия культура. Это свидетельствует о универсальности даного явл-я человского общства. Понятием умственные кач-ва чела, и образ жизни, и систему положительных ценностей и так далее. В таком контексте все созданное челом есть связано с ее инструментальной трактовкой. Культура — это сист. ср-в человской деят-ти, благодаря кот. реализуются действия индивида, групп, человечества в их взаимодействии с природой и между собой. Эти ср-ва создаются людьми , постоянно меняются и совершенствуются. Принято выделять 3 типа культуры: материальную, социальную и духовную. Материальная культура -совокупность ср-в бытия чела и общства. Она вкл разнообразные факторы: орудия труда, технику, благсост-е чела и общства. социальная культура — это сист. правил поведения людей в различн. видах общения. Она вкл этикет, профессиональную, правовую, религиозную и т. д. разновидности деят-ти чела. более подробно содержательная часть 1ой и 2й культур изучается в других дисциплинах. Духовная культура — это составная часть культурных достижений человечества. Осн. виды духовной культуры — Мораль, право, мировоззрение, идеология, иск-во, наука и т.д. Кажд из этих видов духовной культуры сост. из относит. самостоятельных частей. Эти части взаимосвязаны и относятся к духовной культуре человечества. Под наукой в настоящее время понимают ту сферу человской деят-ти, ф-я кот. — выработка и теоретич систематизация объективн. знаний о действит-ти. Сист. наук условно делится на ественые, общественные и технические науки. В науке принято выделять систему знаний о природе — естествознание, кот. явл. предметом естественнонаучной культуры и систему знаний о позитивно значимых ценностях бытия индивида, групп , гос-ва, человечества — гуманитарные науки или гуманитарную культуру. До того, как наука оформилась в самостоятельную часть культуры человечества, знания о природе и ценностях общ-веной жизни входили в иные состояния духовной культуры : практ. опыт, мудрость, народная медицина, натурфилософия и т.д. Взаимосвязь естественнонаучной и гуманитарной культур закл. в след-м: * они имеют единую основу, выраженную в потребностях и интересах чела и человечества, в создании оптимальных усл-ий для самосохранения и самосовершенствования; * осуществляют взаимообмен достигнутыми результатами; * взаимно координируют в процесе развития человечества; * явл. самостоятельными ветвями единой системы знаний науки и духовной культуры в целом. Мы являемся свидетелями того, как социологи, юристы, экономисты, менеджеры и друг. специалисты — гуманитарии начинают применять в своей работе системный подход, идеи и методы кибернетики и Т. информации, знание фундаментальных законов естествознания и в частности физики. Поясним вышесказанное примерами из практики. Юрист разбирает дело о столкновении судов. конечно, ему нужно знать законы, приняты в мировой практике судовождения. Но, с другой стороны, if он не знает, что такое маса, радиус поворота, скорость, ускорение и т. д. , он не сможет реально применить свои профессиональные знания. Социолог изучает общ-ное мнение путем опроса. Но как он сможет оценить степень достоверности результатов, if не имеет предсказаний не будут представлять практической цености. Менеджерхорошо известно, что на выставках или просмотрах первые вопросы всегда касаются техн. сторон изделия. конечно, полностью ответить на такие вопросы может только специалист, имеющий хорошую фундаментальную естественнонаучную подготовку. однако разбираться в этих вопросах должен и менеджер. Существует и другая сторона рассматриваемого вопроса. Наука часто обвиняется в тех грехах, в кот. повинна не столько она сама, сколько та сист. институтов, в рамках кот. она функционирует и развивается. В настоящее время очевидно, что развитие науки может приводить к отрицательным последствиям влияющем на все челоство в целом. актуальным становится вопр о соц. ответственности всех людей, а не только ученых за возможность юзания из открытий и достижений. В настоящее время сформировалась направл., называемое этикой науки, дисциплине, изучающей нравственные основы научн. деят-ти. В кач. примера можно привести пример из истор. 2й мировой войны. Р.Оппенгеймера называют отцом атомной бомбы. Он являлся координатором и руководителем проекта создания атомной бомбы. Она была создана и испытана сначала в Неваде, а потом и в Хиросиме и Нагасаке. позднее Оппенгеймер, осознавая тяжесть ответственности, ушел из проекта и стал заниматься деятельностью, направленной на предотвращение юзания атомных бомб. вышесказанное утверждает нас в мысли, что представляется весьма важным познакомится с осн. концепциями естествознания. Это необходимо для того, чтобы: во перв., сознательно применять их в своей деят-ти, во вторых, чтобы получить > ясное и точное представление о современ. научн. картине мира, кот. дает естествознание. Необходимость применения естствено научных методов и законов в практической деят-ти гуманитарных специальностей и привело к постановке того курса, кот. мы будем изучать: Физика для гуманитариев.

(38) Связь между разделами естествознания. слово естествознание представляет из себя сочетание 2х слов: естество (природа) и знание. В настоящее время под естествознанием подразумевается в основном точное знание о том, что в природе, во Вселенной действительно есть или по крайней мере возможно. Первнач. к физике Аристотель относил проблемы устр-ва, происхождения, организации всего, что есть во Вселенной, даже жизни. Само слово физика, греческое по происхождению, близко к русскому слову природа. Тким обрзом, первоначально естествознание называлось физикой. В своем развитии наука прошла 4 стадии развития. На 1ой стадии формулировались общ. представл. о природе, окружающем мире как о чем-то целом. В этой стадии произошло развитие натурфилософии (философии природы) ставшей вместилищем идей и догадок, кот. к 13-15 векам стали зачатками ественых наук. В 15-17 веках последовала аналитическая стадия — мысленное расчленение и выделение частностей, превратившая физику, астрономию, химию, биологию действительно в науки. Позднее, ближе к нашему времени, наступила синтетическая стадия изучения природы, характеризуемая воссозданием целостной картины мира на основе ранее познанных частностей. Сегодня пришло время обосновать не только принципиальную целостность всего естествознания, но пояснить, почему имено физика, химия и биология стали осн. и самостоятельными разделами науки о природе. Т.е. в настоящее время осущ-ется целостная интегрально — дифференциальная стадия развития естествознания, как единой науки о природе. Все описанные стадии изучения природы по сущ-ву представл. звенья 1ой цепи. Кажд из разделов естествознания прощел через эти стадии. Рассмотрев в следующей части коротко ист-ю развития физики мы видим, что она тоже прошла все описанные стадии. Отличие имеется лишь в том, что описание этапов развития физики мы будем давать с тчки зрения развития методов подхода к изучаемым явлениям. В физике сейчас также наступает интеграционная стадия, характеризуемая тем, что проводятся попытки создать единые Т., объединяющие различн. разделы. Примером тому может служить попытка создать единую Т. поля. Рассмотрим главные разделы естествознания и связь между ними. Мы уже говорили о движении материи. В порядке возрастания сложности мы приводили следующие формы движения: механическую, физическую, химическую, биологическую, общественную. Все формы движения связаны между собой. Высшие содержат в себе низшие, составными части, но ни в коем случае не сводятся только к ним. Например, нельзя ядерные силы свести к механическим. различные виды движений, существующих в природе изучают различн. разделы естествознания: ФИЗИКА, ХИМИЯ, БИОЛОГИЯ, ПСИХОЛОГИЯ и друг. разделы. В каждом из разделов естествознания имеются свои законы, кот. не могут быть сведены к законам других разделов, однако, Т., описывающие сложные структуры, опираются на Т. и законы для простых структур. При этом, как правило, по мере усложнения структур и разделов естествознания их законы становятся менее точными, формулировки приближаются к кач-веным. Чем ниже уровень раздела естествознания, тем сложнее и точнее математические формулировки его законов. наиболее сложны для понимания законы физики — фундаменте всех ественых наук. В этом разделе мы попытаемся показать связь физики с другими науками, очерти м круг фундаментальных задач, возникающих в пограничных областях и на стыке наук. однако, мы коснемся связей физики с техникой, физики с пром-тью, физики с общ-веной жизнью и физики с искусством. Связь с последнем прослеживается на многих ист-ких примерах, когда выдающиеся скульпторы, архитекторы и живописцы прошлого были одновремено и крупными учеными. Химия испытывает на себе влияние физики, пожалуй сильнее, чем любая другая наука. На заре своего развития она играла важную роль в становлении физики. Эти науки взаимодействовали очень сильно, они были практически неразделимы. Т. атомного строения в-ва получила основательное подтверждение имено в химических опытах. Под Т. неорганической химии подвел черту Д.И.Менделеев (1834-1907), создав свою периодическую систему химических эл-тов. Эта сист. выявила немало удивительных связей между различными элементами. Она предсказала сущ-ние многих тгда еще неизвестных химических эл-тов. однако, объяснение системы Менделеева возможно только с опорой на Т. строения атома, т.е. на физическую Т.. В настоящее время в неорганической химии остались 2 раздела: физическая химия и квантовая химия. Сами названия этих разделов говорят о тесной связи с физикой. другая ветвь химии — органическая химия, химия веществ, связаных с жизненными процессами. Одно время предполагали, что органические в-ва столь сложны, что их нельзя синтезировать. однако, развитие физики и неорганической химии изменило ситуацию. В настоящее время научились синтезировать сложные органические соединения, необходимые в жизненых процессах. Главной задачей органической химии явл. анализ и синтез веществ, образующихся в биологических сист., живых организмах. Отсюда вытекает тесная связь химии и физики с другим разделом естествознания, с биологией. Изучение живых организмов позволяет увидеть множество чисто физических явлений: циркуляцию и гидродинамику протекания крови, давление в сосудах и т.д. Биология — очень широкое поле деят-ти для приложения физических и химических теорий. Например, как осущ-ется зрение, что происходит в глазе. Как квант света взаимодействует с сетчаткой. Однако, эти вопросы не осн. в биологии, не они лежат в сущности всего живого. Фундаментальные процесы, изучаемые в биологии лежат глубже, в понимании функционирования клеток, их биохимических циклов. В конечном итоге, в понимании того, что есть жизнь. Понятие жизни не удается свести только к хим или физ. процесам. Психология изучает отражение действит-ти в процессах деят-ти чела и животных. Эта наука лежит на грани ественых и общ-веных наук. казалось бы, какая связь может быть у нее с физикой. Давайте рассмотрим пару примеров. Одной из ветвью психологии явл. то есть о закономерностях функционирования и регуляции биологических систем разного уровня организации»>физиология ощущений. Она расм. взаимосвязь между поведением чела и его ощущениями. Почему красный цвет вызывает тревожные ощущения, а зеленый наоборот. Недаром запрещающий цвет светофора — красный, а разрешающий — зеленый. Ответ может дать физика. днем max излучения солнца приходится на зеленый цвет. День — самое безопасное время суток, и в процесе эволюции у живых организмов выработалась положительная реакция на зеленый цвет. В сумерках max излучения солнца сдвинут в красную область. Сумерки — самое опасное время суток, когда хищные животные выходят на охоту. Есcно, что в процесе эволюции выработалось отрицательная реакция на этот цвет. Другой пример из облти криминалистики, кот. условно также можно отнести к ветви психологии, поскольку она расм. поведения людей в сложных ситуациях, приводящих к криминальным случаям. Когда доктор Ватсон спросил, знает ли Шерлок Холмс о Т. Коперника и о строении солн. системы, Холмс ответил, что наверно знал, но постарался об этом забыть. Тем не менее, доктором Ватсоном было установлено, что Холмс обладает глубокими знаниями в облти химии и ряда разделов физики. действительно, сейчас ни 1 криминалист не может обойтись без такого раздела физики, как механика, точнее ее прикладного раздела — баллистики, а также ряда других. В заключении этого раздела упомянем еще 1 момент, выявляющий связь физики с другими разделами естествознания. Все приборы, используемые в опытах и экспериментах созданы специалистами с техническим (т.е. физ.) образованием. Принцип действия этих приборов основан на физических законах. В конечном итоге, тестер для измерения напряжения или тока , томограф, получающий пространственную картину внутренних органов, микроанализатор, определяющий уровень загрязненности окружающей среды или потребляемой пищи, требуют от работающих определенных знаний. С 1ой стороны — это знание основных принципов работы прибора, с другой стороны — умение оценивать степень точности параметров, кот. измеряет данный прибор.

10. Äåòåðìèíèçì êëàñè÷. ìåõàíèêè. Ïîä äåòåðìèíèçìîì ïîíèìàåòñÿ ôèëîñîôñêîå ó÷åíèå îá îáúåêòèâíîé çàêîíîìåðíîñòè, âçàèìîñâÿçè è ïðè÷èííîé îáóñëîâëåííîñòè âñåõ ÿâëåíèé ìàò. è äóõîâíîãî ìèðà. Öåíòðàëüíûì ÿäðîì äåòåðìèíèçìà ÿâë. ïîëîæ. î ïðè÷èííîñòè. Èäåÿ äåòåðìèíèçìà ñîñò. â òîì, ÷òî âñå ÿâë-ÿ è ñîáûòèÿ â ìèðå íå ïðîèçâîëüíû, à ïîä÷èíÿþòñÿ îáúåêòèâíûì çàêîíîìåðíîñòÿì, íåçàâèñèìî îò íàøèõ çíàíèé î ïðèðîäå ÿâëåíèé. Âñÿêîå ñëåäñòâèå èìååò ñâîþ ïðè÷èíó. äåòåðìèíèçì Ëàïëàñà(1749 — 1827). Ñîãëàñíî êëàññè÷åñêîìó ìåõàíèñòè÷åñêîìó äåòåðìèíèçìó ñóù-âóåò ñòðîãî îäíîçíà÷íàÿ ñâÿçü ìåæäó ôèçè÷åñêèìè âåëè÷èíàìè, õàð-åðèçóþù. ñîñò. ñèñòåìû â êàêîé-òî ìîìåíò âðåìåíè (êîîðäèíàòû è èìïóëüñû) è çíà÷åíèÿìè ýòèõ âåëè÷èí â ëþá. ïîñëåäóþùèé èëè ïðåäûäóùèé ìîìåíòû âðåìåíè. Ïðèíöèï ìåõàíè÷åñêîãî äåòåðìèíèçìà. If èçâåñòíû íà÷àëüíûå êîîðäèíàòû è ñêîð. òåë ñèñòåìû, à òàêæå çàêîíû âçàèìäåéñò. òåë, òî ìîæíî îïðåäåëèòü ñîñò. ñèñòåìû â ëþá. ïîñëåäóþùèé ìîìåíò âðåìåíè. Îòìåòèì, ÷òî äëÿ óñïåøíîãî ïðàêòè÷åñêîãî ðåøåíèÿ ïîäîáíûõ çàäà÷ çàêîíû âçàèìäåéñò. òåë íóæíî çíàòü î÷åíü òî÷íî, ëèáî íóæíî ñìèðèòüñÿ ñ òåì, ÷òî ðàñ÷åò áóäåò àäåêâàòíî îïèñûâàòü ïîâåäåíèå ñèñòåìû ëèøü â îãðàíè÷åííîì âðåìåííîì èíòåðâàëå. Ñâÿçàíî ýòî ñ òåì, ÷òî íåòî÷íîñòè ðàñ÷åòà èìåþò ñâîéñòâî íàêàïëèâàòüñÿ è èñêàæàòü ïîëó÷àþùóþñÿ êàðòèíó, — ÷åì äàëüøå, òåì áîëüøå. Êðîìå òîãî íóæíî èìåòü ââèäó, ÷òî äëÿ ðåøåíèÿ çàäà÷è î äâèæåíèè áîëüøîãî êîë-âà âçàèìîäåéñòâóþùèõ òåë íóæíî çàäàòü î÷åíü áîëüø êîë-âî íà÷àëüíûõ äàííûõ, çàêîíîâ âçàèìäåéñò. è ðåøàòü î÷åíü ãðîìîçäêóþ ñèñòåìó äèôôåðåíöèàëüíûõ óðàâíåíèé. Ñ ïîçèöèé ñåãîäíÿøíèõ çíàíèé î ïðèðîäå ìîæíî óòâåðæäàòü, ÷òî ìåõàíèñòè÷åñêèé äåòåðìèíèçì Ëàïëàñà íå ðàáîòàåò â ìèêðîìåðå, ãäå ïðîöåñû âçàèìäåéñò. ÷àñòèö ïî ñâîåé ïðèðîäå ÿâë. âåðîÿòíîñòíûìè. Ïðè ñòîëêíîâåíèè 2õ àòîìîâ 1 èç íèõ ìîæåò âîçáóäèòüñÿ (ïåðåéòè â âîçáóæäåííîå ñîñò.), à ìîæåò è îñòàòüñÿ â îñíîâíîì, íåâîçáóæäåííîì ñîñò..  ïîñëåäíåì ñëó÷àå àòîìû áóäóò ñòàëêèâàòüñÿ êàê èäåàëüíî óïðóãèå øàðû, â ïåðâîì ñëó÷àå êàê íåóïðóãèå øàðû. Ðåçóëüòàòû ñòîëêíîâåíèÿ â ýòèõ ñëó÷àÿõ áóäóò ñèëüíî ðàçëè÷àòüñÿ, à ðåøèòü, êàê áóäåò ïðîèñõîäèòü âçàèìäåéñòâèå, äî òîãî êàê îíî ïðîèçîéäåò, â ïðèíöèïå íåâîçìîæíî.  ìèêðîìèðå ìîãóò îäíîâðåìåíî ïðîòåêàòü ïðîöåñû, êîò. àáñîëþòíî íåñîâìåñòèìû â ìàêðîìèðå. Êîãäà îïèñûâàåòñÿ êâàíòîâàÿ ìèêðîñèñòåìà, ïðåäñêàçûâàåòñÿ åå ïîâåäåíèå â ðàìêàõ âåðîÿòíîñòíîãî îïèñàíèÿ, íî íå äàåòñÿ îäíîçíà÷íîãî îòâåòà, êàê êîíêðåòíî îíà áóäåò ñåáÿ âåñòè. Ïðè ýòîì âñåãäà îñòàþòñÿ â ñèëå ïðè÷èííî-ñëåäñòâåííûå ñâÿçè.

11. ÐÀÁÎÒÀ, êèíåòè÷åñêàÿ ýí-ÿ.Ýíåðãèÿ- íàèáîëåå îáùàÿ êîëè÷åñòâåííàÿ ìåðà äâèæåíèÿ è âçàèìäåéñò. ìàòåðèè. Äëÿ èçîëèðîâàííîé ñèñòåìû ýí-ÿ îñòàåòñÿ ïîñò., îíà ìîæåò ïåðåõîäèòü èç 1îé ôîðìû â äðóã., íî åå êîë-âî îñòàåòñÿ íåèçìåííûì. If ñèñò. íå èçîëèðîâàíà, òî ýí-ÿ ìîæåò èçìåíÿòñÿ ïðè îäíîâðåìåííîì èçìåíåíèè ýíåðãèè îêðóæàþùèõ òåë íà òàêóþ æå âåëè÷èíó èëè çà ñ÷åò ýíåðãèè âçàèìäåéñò. òåë âíóòðè ñèñòåìû. Ïðè ïåðåõîäå ñèñòåìû èç îäíîãî ñîñòîÿíèÿ â äðóãîå åå ýí-ÿ íå çàâèñèò îò òîãî, êàêèì ïóòåì ïðîèçîøåë ýòîò ïåðåõîä. Ýíåðãèÿ ñèñòåìû â îáùåì ñëó÷àå ìîæåò ïåðåõîäèòü â äðóã. ôîðìû ìàòåðèè. Ïîñêîëüêó ñóù-âóåò ìíîãîîáðàçèå ôîðì äâèæåíèÿ ìàòåðèè, ñóù-âóåò è ìíîãîîáðàçèå âèäîâ ýíåðãèé: êèíåòè÷åñêóþ, ïîòåíöèàëüíóþ è ïîëí ìåõàíè÷åñêóþ ýíåðãèþ. Ðàáîòà ñèëû- ìåðà äåéñòâèÿ ñèëû, êîò. çàâèñèò îò ÷èñëåííîé âåëè÷èíû ñèëû è åå íàïðàâë-ÿ, îò ïåðåìåùåíèÿ ò÷êè ïðèëîæåíèÿ ñèëû. If ñèëà F ïîñòîÿíà ïî âåëè÷èíå è íàïðàâë., à ïåðåìåùåíèå ïðîèñõîäèò âäîëü ïðÿìîé, òî ðàáîòà =à ïðîèçâåäåíèþ ñèëû íà âåëè÷èíó ïåðåìåùåíèÿ è êîñèíóñ óãëà ìåæäó íàïðàâëåíèåì ñèëû è ïåðåìåùåíèåì. ðàáîòà — âåëè÷èíà ñêàëÿðíàÿ. Åäèíèöåé èçìåðåíèÿ Äæîóëü (Äæ).  îáùåì ñëó÷àå äëÿ âû÷èñëåíèÿ ðàáîòû ïîä äåéñòâèåì ïåðåìåííîé ñèëû íà êðèâîëèíåéíîì ó÷àñòêå òðàåêòîðèè ââîäÿò ýëåìåíòàðíóþ ðàáîòó dA. Ñ÷èòàåì, ÷òî íà áåñêîíå÷íî ìàëîì ó÷àñòêå ïóòè dr ñèëà íå ìåíÿåòñÿ è ýëåìåíòàðíàÿ ðàáîòà dA îïð-ñÿ êàê: dA=F*dr*cos’àëüôà’=(F’âåêòîð’dr’âåêòîð’) (11.2). Ðàáîòà — âåëè÷èíà àääèòèâíàÿ; ðàáîòà ñèëû íà êîíå÷íîì ó÷àñòêå ïóòè (1)R(2) îïð-ñÿ êàê ñóììà ýëåìåíòàðí. ðàáîò. Ñóììèðîâàíèå ïî áåñêîíå÷íî ìàëûì âåëè÷èíàì dÀ åñòü îïåðàöèÿ èíòåãðèðîâàíèÿ: A12=’èíòåãðàë îò 1 äî 2′(F(âåêòîð)dr(âåêòîð)) (11.3), ãäå èíòåãðèðîâàíèå âåäåòñÿ âäîëü òðàåêòîðèè.  âåêòîðíîì àíàëèçå òàêîé èíòåãðàë íàç. öèðêóëÿöèåé âåêòîðà ñèëû. Çàìåòèì, ÷òî â ýòîì âûðàæåíèè ëåãêî ïåðåéòè ê äðóãîé ïåðåìåííîé èíòåãðèðîâàíèÿ, êî âðåìåíè. A12=’èíòåãðàë îò 1 äî 2′(F(âåêòîð)dr(âåêòîð)) = ‘èíòåãðàë îò t1 äî t2′((F(âåêòîð)V(âåêòîð))dt)= ‘èíòåãðàë îò t1 äî t2′(Ndt) (11.4). Ââåäåííàÿ çäåñü âåëè÷èíà N íàç. ìãíîâåíîé ìåõàíè÷åñêîé ìîùíîñòüþ èëè ïðîñòî ìîùíîñòüþ òåëà. N=dA/dt=(F(âåêòîð)dr(âåêòîð)/dt)=(F(âåêòîð)v(âåêòîð)) (11.5). ×òî áóäåò ïðîèñõîäèòü ñ ñèñòåìîé (â ïðîñòåéøåì ñëó÷àå -ñ ìàò. òî÷êîé) ïðè ñîâåðøåíèè ðàáîòû íàä íåé. Çàïèøåì ýëåìåíòàðíóþ ðàáîòó è âûðàçèì ñèëó â íåì ïðè ïîìîùè 2ãî ç-íà Íüþòîíà. dA=(F(âåêòîð)dr(âåêòîð))=m(a(âåêòîð)dr(âåêòîð))=m(dv(âåêòîð)dr(âåêòîð))/dt=m (dv(âåêòîð)v(âåêòîð))=md(v(âåêòîð)v(âåêòîð))/2=md(v^2)/2=d(mv^2/2) (11.6) Ñëåâà ñòîèò ýëåìåíòàðíàÿ ðàáîòà, à ñïðàâà äèôôåðåíöèàë íåêîòîðîé ô-è ,èìåþùèé ðàçìåðíîñòü ðàáîòû è çàâèñÿùèé îò ñêîð.: äèôôåðåíöèàë ô-è ñêîð., îïðåä-ìîé ñîâåðøåíîé ðàáîòîé. Ïóñòü â íà÷àëüíûé ìîìåíò âðåìåíè t0 ñêîðîñòü òåëà ðàâíÿëàñü (0. Ïîëíóþ ðàáîòó çà ïðîìåæóòîê âðåìåíè îò t0 äî t1 ïîëó÷èì ïîñëå èíòåãðèðîâàíèÿ dA, êàê ýòî ñäåëàíî â ôîðìóëå (11.4). Ñîâåðøàåìàÿ íàä òåëîì ðàáîòà ïðèâåëà ê óâåëè÷åíèþ åãî ñêîð..Òåïåðü ìîæíî ââåñòè ïîíÿòèå êèí. ýíåðãèè: A01=m(v1)^2/2 — m(v0)^2/2 = Ek1-Ek0. (11.7) Êèíåòè÷åñêàÿ ýí-ÿ îïð-ñÿ ðàáîòîé, êîò. ñîâåðøåíà íàä òåëîì. Ïîëîæèòåëüíàÿ ðàáîòà ïðèâîäèò ê óâåëè÷åíèþ ñêîð. òåëà è ê óâåëè÷åíèþ êèí. ýíåðãèè, îòðèöàòåëüíàÿ — ê óìåíüøåíèþ òîãî è äðóãîãî. If ñèñò. ñîñò. èç ìíîãèõ òåë, òî åå êèíåòè÷åñêàÿ ýí-ÿ ñêëàäûâàåòñÿ èç êèíåòè÷åñêèõ ýíåðãèé âñåõ òåë.

12. Ïîëÿ êîíñåðâàòèâíûõ ñèë. Ïîòåíöèàëüíàÿ ýíåðãèè . 13. Ç-í ñîõðàíåíèÿ ìåõàíè÷åñêîé ýíåðãèè. Êðîìå êèí. ýíåðãèè åñòü åùå ïîòåíöèàëüíàÿ ýí-ÿ, äëÿ êîò. íå ñóù-âóåò îáùåé ôîðìóëû. Ýòî ïîíÿòèå ìîæíî ââåñòè ëèøü äëÿ îãðàíè÷. êëàñà ñèë — äëÿ êîíñåðâàòèâíûõ ñèë. Ýòî ñèëû, ðàáîòà êîò. ïî çàìêíóòîé òðàåêòîðèè =à íóëþ. Ñóùåñòâóåò äðóãîå îïðåäåëåíèå êîíñåðâàòèâíûõ ñèë. Êîíñåðâàòèâíûìè ñèëàìè íàçûâàþòñÿ òàêèå ñèëû, ðàáîòà â ïîëå êîò. íå çàâèñèò îò òðàåêòîðèè è îïð-ñÿ òîëüêî íà÷àëüíûì è êîíå÷íûì ïîëîæåíèåì ñèñòåìû. Íåòðóäíî ïîêàçàòü, ÷òî ýòè îïðåäåëåíèÿ ðàâíîçíà÷íû. Äåéñòâèòåëüíî, if ðàáîòà íå çàâèñèò îò òðàåêòîðèè, òî ïðè îáðàòíîì äâèæåíèè âäîëü òðàåêòîðèè îíà áóäåò òàêàÿ æå, íî ñ îáðàòíûì çíàêîì. Ïðîñóììèðîâàâ äâèæåíèå ïî çàìêíóòîé òðàåêòîðèè, ñîñòîÿùåé èç 2õ êðèâûõ, ïîëó÷àåì â ñóììå 0. Êîíñåðâàòèâíûå ñèëû, êàê ïðàâèëî, çàâèñÿò òîëüêî îò ïîëîæåíèÿ òåëà, à íåêîíñåðâàòèâíûå — îò åãî ñêîð.. Ðàññìîòðèì ïðèìåðû ïîëåé êîíñåðâàòèâíûõ è íåêîíñåðâàòèâíûõ ñèë. Ñèëû òðåíèÿ èëè ñîïðîòèâëåíèÿ ÿâë. íåêîíñåðâàòèâíûìè. Èõ íàïðàâë. îïð-ñÿ ñêîð-òüþ ïåðåìåùåíèÿ òåë. Ñèëû òðåíèÿ âñåãäà íàïðàâëåíû â ñòîðîíó, ïðîòèâîïîëîæíóþ íàïðàâë. äâèæåíèÿ, ò.å.: F(âåêòîð)òð=-(v(âåêòîð)/v)Fòð. Çäåñü v(âåêòîð)/v — åäèíè÷íûé âåêòîð, íàïðàâëåííûé âäîëü ñêîð. òåëà. Ðàáîòà ñèëû òðåíèÿ ïî çàìêíóòîé òðàåêòîðèè l =à: A(l)= ‘èíòåãðàë c êðóæêîì îò (l)'(-Fòð((v(âåêòîð)/v)dr(âåêòîð)))= -‘èíòåãðàë îò t1 äî t2′(Fòð((v(âåêòîð)/v)dr(âåêòîð)/dt)dt)= -‘èíòåãðàë îò t1 äî t2′(Fòð((v(âåêòîð)v(âåêòîð))/v)dt)= -‘èíòåãðàë îò t1 äî t2′(Fòð*vdt)=- ‘èíòåãðàë c êðóæêîì îò (l)'(Fòð*dl). Êðóæîê ó èíòåãðàëà — èíòåãðèðîâàíèå ïî çàìêíóòîé òðàåêòîðèè. Ïîñëåäíåå ïîäûíòåãðàëüíîå âûðàæåíèå ñêàëÿðíîå, îíî âñåãäà ïîëîæèòåëüíî, ñëåä., ðàáîòà ñèëû òðåíèÿ íà çàìêíóòîé òðàåêòîðèè âñåãäà îòðèöàòåëüíà. Ýòà ðàáîòà òåì áîëüøå ïî ìîäóëþ, ÷åì äëèíåå ïóòü. Âûâîä: ñèëû òðåíèÿ — íåêîíñåðâàòèâíûå ñèëû. Ïðèìåðîì ïîëÿ êîíñåðâàòèâíûõ ñèë ÿâë. ïîëå òÿãîòåíèÿ âáëèçè ïîâ-òè Çåìëè. Ðàáîòà, êîò. çàòðà÷èâàåòñÿ íà ïåðåìåùåíèå òåëà èç ïîëîæåíèÿ r1 â ïîëîæ. r2 =à: A12=’èíòåãðàë îò r1 äî r2′(mg(âåêòîð)dr(âåêòîð))=’èíòåãðàë îò r1 äî r2′(mg dr(g))=-mg’èíòåãðàë îò h1 äî h2′(dh)=mg(h1-h2). Èç ýòîé ôîðìóëû âèäíî, ÷òî ðàáîòà ñèëû òÿæåñòè çàâèñèò îò âåëè÷èíû ýòîé ñèëû è îò ðàçíîñòè íà÷àëüíîé è êîíå÷íîé âûñîò òåëà. Íèêàêîé çàâèñèì. îò ôîðìû òðàåêòîðèè íåò, à çí÷èò, ñèëà òÿæåñòè êîíñåðâàòèâíà. Òàêæå ïðîñòî ìîæíî äîêàçàòü, ÷òî êîíñåðâàòèâíûìè ÿâë. ñèëû, ñîçäàþùèå îäíîðîäíîå ïîëå. Ïîëå ñèë íàç. îäíîðîäíûì, if â ëþá. òî÷êå ýòîãî ïîëÿ ñèëà, äåéñòâóþùàÿ íà òåëî îäèíàêîâà ïî âåëè÷èíå è íàïðàâë.. Êîíñåðâàòèâíûìè ÿâë. òàêæå ïîëÿ öåíòðàëüíûõ ñèë. Öåíòðàëüíûìè íàçûâàþòñÿ ñèëû, íàïðàâëåííûå âäîëü ëèíèè âçàèìäåéñò. òåë, âåëè÷èíà êîò. çàâèñèò òîëüêî îò ðàññòîÿíèÿ ìåæäó òåëàìè. Òàêîìó óñëîâèþ óäîâëåòâîðÿþò, íàïðèìåð, êóëîíîâñêèå ñèëû è ñèëû òÿãîòåíèÿ.  ïîëå êîíñåðâàòèâíûõ ñèë ìîæíî ââåñòè åùå 1 âèä ìåõàíè÷åñêîé ýíåðãèè — ïîòåíöèàëüíóþ ýíåðãèþ. Ïðåæäå ÷åì åå ââîäèòü, âûáèðàþò ò÷êó, â êîò. îíà =à íóëþ. Ïîòåíöèàëüíàÿ ýí-ÿ òåëà â ëþá. òî÷êå ïðîñò-âà îïð-ñÿ ðàáîòîé, êîò. íóæíî ñîâåðøèòü, ÷òîáû ïåðåìåñòèòü òåëî èç ýòîé ò÷êè â ò÷êó ñ íóëåâîé ïîò. ýíåðãèåé. Îòìåòèì 2 ñóùåñòâåííûõ ìîìåíòà, âûòåêàþùèõ èç ýòîãî îïðåäåëåíèÿ. Âî-ïåðâ., ïîñêîëüêó ðàñì-åòñÿ ïîëå êîíñåðâàòèâíûõ ñèë, çíà÷. ïîò. ýíåðãèè òåëà çàâèñèò îò ïîëîæåíèÿ òåëà è âûáîðà ò÷êè íóëåâîé ïîò. ýíåðãèè è íå çàâèñèò îò ôîðìû ïóòè, ïî êîò òåëî ïåðåìåùàåòñÿ. Âî-âòîðûõ, ïîñêîëüêó âûáîð íóëÿ ïîò. ýíåðãèè ïðîèçâîëåí, çíà÷. ïîò. ýíåðãèè îïð-ñÿ ñ òî÷íîñòüþ äî àääèòèâíîé ïîñò., ñëåä. ôèç. ñìûñë èìååò ëèøü ðàçíîñòü ïîòåíöèàëüíûõ ýíåðãèé èëè ïðèðàùåíèå ïîò. ýíåðãèè, íî íå ñàìà ýí-ÿ. Íà ðèñ.11.3 ìû ïðåäñòàâèëè 3 ò÷êè â ïðîñò-âå ïîëÿ êîíñåðâàòèâíûõ ñèë: ò÷êó (b), ò÷êó (ñ) è ò÷êó (î), ïîòåíöèàëüíóþ ýíåðãèþ â êîò. áóäåì ñ÷èòàòü =îé 0. Îáîçíà÷èì ÷åðåç Abo ðàáîòó, êîò. ñîâåðøàåòñÿ ïðè ïåðåíîñå òåëà èç ò÷êè (b) â ò÷êó (o). If ïåðåìåùàòü òåëî èç ò÷êè (o) â ò÷êó (b), òî ñîâåðøàåìàÿ ïðè ýòîì ðàáîòà áóäåò =à Aob=-Abo, ïîñêîëüêó ìåíÿåòñÿ íàïðàâë. äâèæåíèÿ, íî íå ìåíÿþòñÿ äåéñòâóþùèå íà òåëî ñèëû. Ðàáîòó ïî ïåðåìåùåíèþ òåëà èç ò÷êè (c) â ò÷êó (o) áóäåì îáîçíà÷àòü, êàê Àño. Òî÷íî òàêæå Àñî=-Àîñ. Ïðè ïåðåìåùåíèè òåëà èç ò÷êè (b) â ò÷êó (c) ñîâåðøàåòñÿ ðàáîòà Abc=-Acb. Ñîãëàñíî îïðåäåëåíèþ ïîò. ýíåðãèè è ôîðìóëå (11.3) äëÿ âû÷èñëåíèÿ ðàáîòû èìååì: Eï(b)=A(b0)= ‘èíòåãðàë îò b äî 0′(F(âåêòîð)dr(âåêòîð)); Eï(ñ)=A(ñ0)= ‘èíòåãðàë îò ñ äî 0′(F(âåêòîð)dr(âåêòîð)); (11.8). Eï(b)- Eï(c)= ‘èíòåãðàë îò b äî 0′(F(âåêòîð)dr(âåêòîð))- ‘èíòåãðàë îò ñ äî 0′(F(âåêòîð)dr(âåêòîð))= ‘èíòåãðàë îò b äî 0′(F(âåêòîð)dr(âåêòîð))+ ‘èíòåãðàë îò 0 äî c'(F(âåêòîð)dr(âåêòîð))= ‘èíòåãðàë îò b äî c'(F(âåêòîð)dr(âåêòîð))=A(bc) (11.9) Îêàçàëîñü äîêàçàííûì ñëåäóþùåå óòâ.: ðàáîòà, ñîâåðøàåìàÿ ïðè ïåðåìåùåíèè òåëà â ïîëå êîíñåðâàòèâíûõ ñèë èç ò÷êè (b) â ò÷êó (c), =à ðàçíîñòè ïîòåíöèàëüíûõ ýíåðãèé òåëà â òî÷êàõ (b) è (c). Îäíàêî, ýòà æå ðàáîòà =à ðàçíîñòè êèíåòè÷åñêèõ ýíåðãèé â òî÷êå (ñ) è (b). A(bc)=Eê(b)-Eê(ñ)=Eï(ñ)-Eï(b) => Eê(b)+Eï(b)=Eê(ñ)+Eï(ñ) (11.10) Ïîëó÷èëîñü, ÷òî ñóììà êèí. è ïîò. ýíåðãèè òåëà, êîò. íàç. ïîëíîé ìåõàíè÷åñêîé ýíåðãèåé òåëà, îêàçàëàñü íåèçìåííîé. Òîæå ñàìîå ñïðàâåäëèâî è äëÿ ñèñòåìû ìåõàíè÷åñêèõ òåë. Ïîëó÷èâøååñÿ óòâ. íîñèò íàç. ç-íà ñîõðàíåíèÿ ìåõàíè÷åñêîé ýíåðãèè: ïîëíàÿ ìåõàíè÷åñêàÿ ýí-ÿ èçîëèðîâàííîé ñèñòåìû â êîò. äåéñòâóþò êîíñåðâàòèâíûå ñèëû îñòàåòñÿ íåèçìåííîé. Ìåæäó êîíñåðâàòèâíûìè ñèëàìè è ïîò. ýíåðãèåé äîëæíà áûòü ñâÿçü, ïîñêîëüêó ïîòåíöèàëüíàÿ ýí-ÿ ââîäèòñÿ òîëüêî â ïîëå êîíñåðâàòèâíûõ ñèë. Íàéäåì ýòó ñâÿçü äëÿ ïðîñòåéøåãî ñëó÷àÿ, êîãäà ïîòåíöèàëüíàÿ ýí-ÿ çàâèñèò òîëüêî îò 1îé êîîðäèíàòû. Ïðèìåðîì ìîæåò ñëóæèò ïîòåíöèàëüíàÿ ýí-ÿ âáëèçè ïîâ-òè Çåìëè, ê íåìó è îáðàòèìñÿ. Ïóñòü îñü (oy) íàïðàâëåíà âåðòèêàëüíî ââåðõ è èìååò íîëü íà ïîâ-òè Çåìëè. Òîãäà ïîòåíöèàëüíàÿ ýí-ÿ çàâèñèò òîëüêî îò êîîðäèíàòû y è =à: Eï=mgy. Âîçüìåì ÷àñòíóþ ïðîèçâîäíóþ ïî êîîðäèíàòå y îò ëåâîé è ïðàâîé ÷àñòåé =ñòâà: dEï/dy=mg. Ñïðàâà ñòîèò ñèëà òÿæåñòè, êîò. íàïðàâëåíà ââåðõ, ò.å. ïðîòèâ îñè (oy). Ïî-âèäèìîìó, ïðîèçâîäíîé, ñòîÿùåé â ëåâîé ÷àñòè =ñòâà òîæå ìîæíî ïðèïèñàòü íàïðàâë.; åå ïðîåêöèÿ íà îñü (oy) áóäåò =à (dEï/dy)’subscript y’=-mg=-F’subscript y’.  ñëó÷àå, êîãäà äåéñòâóþùàÿ ñèëà èìååò ïðîåêöèè íà âñå êîîðäèíàòíûå îñè, ìîæíî çàïèñàòü àíàëîãè÷íûå âûðàæåíèÿ è äëÿ ïðîåêöèé íà äðóã. îñè. Fx=-dEï/dx; Fy=-dEï/dy; Fz=-dEï/dz (11.11) Äëÿ ñèëû, òàêèì îáðçîì, ñïðàâåäëèâî âûðàæåíèå: F(âåêòîð)=-(e(âåêòîð)x(dEï/dx)+ e(âåêòîð)y(dEï/dy)+ (âåêòîð)z(dEï/dz))=-( e(âåêòîð)x(d/dx)+e(âåêòîð)y(d/dy)+e(âåêòîð)z(d/dz))Eï= -grad Eï (11.12). Ãðàäèåíò ïîò. ýíåðãèè. Îòìåòèì íåêîòîðûå ñâ-âà ýòîãî âåêòîðà. Îñîáåííîñòü åãî ñîñò. â òîì, ÷òî âäîëü êîîðäèíàòíûõ îñåé íóæíî îòêëàäûâàòü íå ÷èñëà, à ìàòåìàòè÷åñêèå îïåðàöèè äèôôåðåíöèðîâàíèÿ ïî ñîîòâåòñòâóþùåé êîîðäèíàòå. Çà ãðàäèåíòîì îáÿçàòåëüíî äîëæíà ñòîÿòü ñêàëÿðíàÿ ô-ÿ, ê êîò. îí ïðèìåíÿåòñÿ. Ãðàäèåíò ïîò. ýíåðãèè èìååò íàïðàâë., â êîò. ïîòåíöèàëüíàÿ ýí-ÿ óâåëè÷èâàåòñÿ áûñòðåå âñåãî, è âåëè÷èíó, ðàâíóþ ñêîð. ýòîãî óâåëè÷åíèÿ, if äâèãàòüñÿ â ýòîì íàïðàâëåíèè. Èç ñêàçàííîãî ñëåä., ÷òî ñèëû ïîëÿ çàñòàâëÿþò òåëî äâèãàòüñÿ â íàïðàâëåíèè ìèíèìóìà ïîò. ýíåðãèè. Âñå åñòâåíûå ïðîöåñû ñòðåìÿòñÿ ïðèâåñòè ñèñòåìó ê ìèíèìóìó ïîò. ýíåðãèè. Ýòîò âûâîä ñïðàâåäëèâ íå òîëüêî äëÿ ìåõàíèêè, íî è äëÿ äðóãèõ ðàçäåëîâ ôèçèêè è åñòåñòâîçíàíèÿ.

14. Âíóòð. ýí-ÿ ñèñòåìû. Ç-í ñîõð-ÿ ýíåðãèè. Ìû ðàññìîòðåëè âçàèìîïðåâðàùåíèå êèí. è ïîò. ýíåðãèé â ïîëå êîíñåðâàòèâíûõ ñèë. ×òî ïðîèñõîäèò, if äåéñòâóþò íåêîíñåðâàòèâíûå ñèëû. Ìû çíàåì, ÷òî, if òåëó ñîîáùèò ñêîðîñòü (ñîîáùèòü êèíåòè÷åñêóþ ýíåðãèþ)è ïóñòèòü äâèãàòüñÿ, íàïðèìåð, ïî ïîâ-òè çåìëè, îíî îñòàíîâèòüñÿ çà ñ÷åò ñèë òðåíèÿ. Åãî ïîòåíöèàëüíàÿ ýí-ÿ íå èçìåíèòñÿ, à êèíåòè÷åñêàÿ ñòàíåò =îé íóëþ, êîãäà îíî îñòàíîâèòüñÿ. Äëÿ îòâåòà íà âîïð, âî ÷òî ïåðåøëà êèíåòè÷åñêàÿ ýí-ÿ, íåîáõîäèìî ââåñòè åùå 1 âèä ýíåðãèè- âíóòðåííþþ ýíåðãèþ. Îïðåäåëèì âíóòðåííþþ ýíåðãèþ Åâí êàê ñóììó êèíåòè÷åñêèõ è ïîòåíöèàëüíûõ ýíåðãèé ÷àñòèö (àòîìîâ), ñîñòàâëÿþùèõ òåëî: Åâí=S((Å^i)ïîò+(Å^i)êèí) (11.13) Çäåñü N -÷èñëî ÷àñòèö, i -íîìåð ÷àñòèöû. Ïàðàìåòðîì, õàðàêòåðèçóþùèì âíóòðåííþþ ýíåðãèþ ÿâë. òåìïåðàòóðà òåëà Ò0Ê, âûðàæåííàÿ â ãðàäóñàõ Êåëüâèíà. ×åì áîëüøå òåìïåðàòóðà òåëà, òåì ñ áîëüøåé ñêîð-òüþ äâèãàþòñÿ àòîìû è òåì ñàìûì áîëüøå âíóòðåííÿÿ ýí-ÿ. ×èñëåííî âíóòðåííÿÿ ýí-ÿ =à: Åâí=(Ì/’ìþ’)C Ò^0 (11.14) Ì — ìàñà òåëà, ??????ìîëÿðíàÿ ìàñà (÷èñëåííî ðàâíàÿ àòîìíîìó èëè ìîëåêóëÿðíîìó âåñó ñîñòàâëÿþùèõ àòîìîâ),Ñ -òåïëîåìêîñòü, ðàâíàÿ ýíåðãèè, êîò. íóæíî ïåðåäàòü 1ìó êèëîãðàììó-ìîëþ, ÷òîáû íàãðåòü åãî íà 1 ãðàäóñ Öåëüñèÿ èëè Êåëüâèíà. Èçìåíåíèå âíóò. ýíåðãèè ïðè ïåðåõîäå ñèñòåìû èç ñîñòîÿíèÿ 1 â ñîñò. 2 ïðîïîðöèîíàëüíî èçìåíåíèþ òåìïåðàòóðû òåëà: Åâí(2)-Åâí(1) = ‘äåëüòà’U = (M/m)C ‘äåëüòà T^0. Ñóììó êèí., ïîò. è âíóò. ýíåðãèé ñèñòåìû ïðèíÿòî íàçûâàòü ïîëíîé ýíåðãèåé Å.  ðàññìîòðåííîì íàìè ïðèìåðå ñ îñòàíàâëèâàþùåìñÿ òåëîì êèíåòè÷åñêàÿ ýí-ÿ òåëà ïåðåõîäèò âî âíóòðåííþþ ýíåðãèþ, ò.å. èäåò íà íàãðåâàíèå ñèñòåìû. Ñ ó÷åòîì âûøåñêàçàííîãî ìû ìîæåì ñôîðìóëèðîâàòü ç-í ñîõðàíåíèÿ ïîëíîé ýíåðãèè ñèñòåìû: Ïîëíàÿ ýí-ÿ èçîëèðîâàííîé ñèñòåìû îñòàåòñÿ ïîñò.. Ìû òåïåðü íå êîíêðåòèçèðóåì, êàêèå ñèëû (êîíñåðâàòèâíûå èëè íåêîíñåðâàòèâíûå) äåéñòâóþò â ýòîé ñèñò-å. Ðàáîòà â ñèñò-å, ñîâåðøàåìàÿ çà ñ÷åò ïîò. ýíåðãèè, ìîæåò ïåðåõîäèòü è â êèíåòè÷åñêóþ ýíåðãèþ ñèñòåìû, è âî âíóòðåííþþ ýíåðãèþ. Ïðè óâåëè÷åíèè âíóò. ýíåðãèè ñèñò. íàãðåâàåòñÿ.

12.1 Ïîñòóëàòû Ò. îòíñèò-òè. Ê êîíöó ïðîøëîãî â. Ä.Ê.Ìàêñâåëëîì (1831-1879) áûëè ñôîðìóëèðîâàíû îñí. çàêîíû ýëåêòðè÷åñòâà è ìàãíåòèçìà â âèäå ñèñòåìû äèôôåðåíöèàëüíûõ óðàâíåíèé, êîò. îïèñûâàëè ïîñòîÿííûå è ïåðåìåííûå ýëåêòðè÷åñêèå è ìàãíèòíûå ïîëÿ. Ðåøåíèÿ ñèñòåìû óðàâíåíèé Ìàêñâåëëà îïèñûâàëè âñþ ãàììó ïîâåäåíèé ýëåêòðîìàãíèòíûõ ïîëåé â ïðîñò-âå è âðåìåíè. Èç ñèñòåìû óðàâíåíèé Ìàêñâåëëà ñëåäîâàëî, ÷òî ïåðåìåííûå ýëåêòðè÷åñêèå è ìàãíèòíûå ïîëÿ ìîãóò ñóùåñòâîâàòü òîëüêî â ôîðìå åäèíîãî ýëåêòðîìàãíèòíîãî ïîëÿ, êîò. ðàñïðîñòðàíÿþòñÿ â ïðîñò-âå ïîñëå âîçíèêíîâåíèÿ ñ ïîñò. ñêîð-òüþ, =îé ñêîð. ñâåòà â âàêóóìå — ñ. Íà âîïð î òîì, â êàêîé ñðåäå ðàñïðîñòðàíÿåòñÿ ýòî ïîëå, Ò. Ìàêñâåëëà îòâåòà íå äàâàëà. Êëþ÷åâûì ìîìåíòîì Ò. Ìàêñâåëëà ÿâëÿëîñü òî, ÷òî óðàâíåíèÿ Ìàêñâåëëà áûëè íåèíâàðèàíòíû îòíîñèò. ïðåîáð. Ãàëèëåÿ. Ýòî îçíà÷àëî, ÷òî ïðè ïåðåõîäå ñ ïîìîùüþ ïðåîáð. Ãàëèëåÿ èç 1îé èíåðö. ñèñòåìû îòñ÷. â äðóã., óðàâíåíèÿ ìåíÿëè ñâîé âèä. Ýòî îáîçíà÷àëî, ÷òî ïðåîáð. Ãàëèëåÿ íåëüçÿ áûëî ïðèìåíÿòü ïðè îïèñàíèè ýëåêòðè÷. è ìàãíèòíûõ ÿâëåíèé. Ñòðîãîå ìàòåìàòè÷åñêîå äîêàçàòåëüñòâî íåèíâàðèàíòíîñòè óðàâíåíèé Ìàêñâåëëà îòíîñèò. ïðåîáð. Ãàëèëåÿ äîñòàòî÷íî ñëîæíî. Ïîýòîìó, ïðîèëëþñòðèðóåì ýòîò ôàêò íà ïðîñòîì è íàãëÿäíîì ïðèìåðå. Äëÿ ýòîãî ïîòðåáóåòñÿ âñïîìíèòü, êàêèå ñèëû äåéñòâóþò íà äâèæóùèåñÿ çàðÿäû â ýëåêòðè÷. è ìàãíèòíûõ ïîëÿõ. Ïóñòü 2 îäíîèìåííûõ çàðÿäà ëåòÿò ñ îäèíàêîâîé ñêîð-òüþ â íàïðàâëåíèè îñè (ox), êàê ýòî ïîêàçàíî íà ðèñ.12.1.  íåïîäâèæíîé ñèñò-å îòñ÷. çàðÿäû áóäóò ñîçäàâàòü ýëåêòðè÷åñêèå è ìàãíèòíûå ïîëÿ, è, ñëåä., áóäóò íàõîäèòüñÿ â ïîëÿõ äðóã äðóãà. Ýëåêòðè÷åñêîå ïîëå âîçäåéñòâóåò íà çàðÿä ñèëîé Êóëîíà, ìàãíèòíîå — ñèëîé Ëîðåíöà. Íàïîìíèì ôîðìóëû äëÿ âû÷èñëåíèÿ ýòèõ ñèë äëÿ ñëó÷àÿ, ïðèâåäåííîãî íà ðèñóíêå. Fê=1/4Ïè’ýïñèëîíò íóëåâîå’*q1q2/l^2; Fa=q2*v*B1, ãäå B1=4*Ïè*q1*v/’ìþ íóëåâîå’*l^2. Çäåñü B1 — ìàãíèòíàÿ èíäóêöèÿ, ñîçäàâàåìàÿ ïåðâûì çàðÿäîì â òî÷êå, ãäå íàõîäèòñÿ 2é. Ñèëà Êóëîíà äëÿ îäíîèìåííûõ çàðÿäîâ âñåãäà ÿâë. ñèëîé îòòàëêèâàíèÿ, à ñèëà Ëîðåíöà â äàííîì ñëó÷àå ÿâë. ñèëîé ïðèòÿæåíèÿ. Òêèì îáðçîì, â íåïîäâèæíîé ñèñò-å îòñ÷. âåëè÷èíà ñèëû âçàèìäåéñò. =à: F = FK — FË. If ïåðåéòè ê ñèñò-å îòñ÷., äâèæóùåéñÿ âäîëü îñè (îõ) ñî ñêîð-òüþ ( âìåñòå ñ çàðÿäàìè, òî â íåé çàðÿäû îêàæóòñÿ íåïîäâèæíûìè, è ñèëà Ëîðåíöà íå âîçíèêíåò. Òêèì îáðçîì, ñèëû âçàèìäåéñò. çàðÿäîâ â ðàçëè÷í. èíåðö. ñèñò. îòñ÷. îêàæóòñÿ ðàçíûìè. Ñëåä. è ïîâåäåíèå ÷àñòèö ,èõ äâèæåíèå âî âðåìåíè, áóäåò ðàçíûì â çàâèñèì. îò òîãî, â êàêîé èíåðö. ñèñò-å êîîðä. ìû ðàññìàòðèâàåì ýòî äâèæåíèå. Åñcíî, ÷òî ýòî àáñóðä è îòñþäà ñäåëàåì âûâîä, ÷òî ê äâèæóùèìñÿ çàðÿäàì, çàêîíû äâèæåíèÿ è âçàèìäåéñò. êîò. îïèñûâàþòñÿ óðàâíåíèÿìè Ìàêñâåëëà, íåëüçÿ ïðèìåíÿòü ïðèíöèï îòíñèò-òè Ãàëèëåÿ, ò.å. ïðåîáð. Ãàëèëåÿ. Âòîðûì ýòàïîì â ñòàíîâëåíèè ñïåöèàëüíîé Ò. îòíñèò-òè ñòàë îïûò À.À.Ìàéêåëüñîíà (1852-1931), ïðîâåäåííûé â 1881 ãîäó.  îïûòå îïðåäåëÿëàñü ñêîðîñòü ñâåòà â ðàçëè÷í. äâèæóùèõñÿ ñèñò. îòñ÷.. Óæå ãîâîðèëîñü, ÷òî ïî Ò. Ìàêñâåëëà ýëåêòðîìàãíèòíûå âîëíû äîëæíû ðàñïðîñòðàíÿòüñÿ ñî ñêîð-òüþ â âàêóóìå — ñ. Âñòàë âîïð, â êàêîé èíåðö. ñèñò-å îòñ÷. ýòî ïðîèñõîäèò. If òàêîâîé ñ÷èòàòü ñèñòåìó îòñ÷., ñâÿçàííóþ ñ íåïîäâèæíûìè çâåçäàìè, òî ñêîðîñòü íàøåé ïëàíåòû îòíîñèò. íèõ ( = 30 êì/ñ. Ýòà ñêîðîñòü áîëüøàÿ è ñðàâíèìàÿ ñî ñêîð-òüþ ñâåòà ñ. Ìàéêåëüñîí ýêñïåðèìåíòàëüíî îïðåäåëÿë ñêîðîñòü ñâåòà â ðàçíûõ ñèñò. îòñ÷., à èìåíî, îí èçìåðÿë ñêîðîñòü ñâåòà, èäóùåãî â 2õ ïðîòèâîïîëîæíûõ îòíîñèò. Çåìëè íàïð-ÿõ.  ñîîòâåòñòâèè ñ ïðåîáðàçîâàíèÿìè Ãàëèëåÿ è ïîëîæåíèÿìè êëàñè÷. ìåõàíèêè, ñêîð. ñâåòà â ýòèõ ñèñò. îòñ÷. äîëæíû áûëè áû îòëè÷àòñÿ íà âåëè÷èíó 2v. Ðåçóëüòàòû ýêñïåðèìåíòà Ìàéêåëüñîíà îäíîçíà÷íî ïîêàçàëè, ÷òî ñêîðîñòü ñâåòà íå çàâèñèò îò âûáîðà ñèñòåìû îòñ÷. è âñåãäà =à ñ. Ò.å. áûëî óñòàíîâëåíî, ÷òî ýëåêòðîìàãíèòíûå âîëíû âî âñåõ èíåðö. ñèñò. îòñ÷. ðàñïðîñòðàíÿþòñÿ ñ îäèíàêîâîé ñêîð-òüþ ñ(3(108 ì/ñ. Ýêñïåðèìåíòû, ïîäîáíûå îïûòó Ìàéêåëüñîíà ïîâòîðÿëèñü íåîäíîêðàòíî ñî âñå âîçðàñòàþùåé òî÷íîñòüþ. Íà ñåãîäíÿøíèé äåíü ìîæíî óòâåðæäàòü, ÷òî ñêîðîñòü â ðàçëè÷í. ñèñò. îòñ÷. îäèíàêîâà ñ òî÷íîñòüþ ïîðÿäêà íåñêîëüêèõ ìì/ñ.

16. Ïðåîáðàçîâàíèÿ Ëîðåíöà.  1904-ì ãîäó ãîëëàíäñêèé ôèçèê Õ.À.Ëîðåíö (1853-1928) âûâåë ïðåîáð. äëÿ ïåðåõîäà èç 1îé èíåðö. ñèñòåìû îòñ÷. â äðóã., îòëè÷íûå îò ïðåîáð. Ãàëèëåÿ. Ñèñò. óðàâíåíèé Ìàêñâåëëà áûëà èíâàðèàíòíà îòíîñèò. ýòèõ ïðåîáð.. Ïðåîáðàçîâàíèÿ êàñàëèñü è êîîðä., è âðåìåíè. Îáîçíà÷èì êîîðäèíàòû è âðåìÿ íåêîòîðîãî ñîáûòèÿ (íàïðèìåð ïîëîæåíèÿ ìàò. ò÷êè â ïðîñò-âå) â èíåðö. ñèñò-å îòñ÷. Ê ÷åðåç x, y, z, t, à â äðóãîé èíåðö. ñèñò-å îòñ÷. Ê’ ÷åðåç x’,y’,z’,t’. Ñèñòåìû îòñ÷. âûáðàíû òàê, ÷òîáû èõ êîîðäèíàòíûå ñåòêè íà÷àëüíûé ìîìåíò âðåìåíè t=t’=0 ñîâïàäàëè, à â äàëüíåéøåì ñèñò. Ê’ äâèãàëàñü îòíîñèò. ñèñòåìû Ê ñî ñêîð-òüþ u âäîëü åå îñè (ox). Ïðåîáðàçîâàíèÿ Ëîðåíöà èìåþò âèä: x’=x-ut/’êîðåíü'(1-(u/c)^2); y’=y; z’=z; t’=(t-ux/c^2)/’êîðåíü'(1-(u/c)^2) (12.1). Ñðàçó ìîæíî ñêàçàòü, ÷òî ïðè u/c ‘ñòðåìèòñÿ’ 0 ïðåîáð. Ëîðåíöà ïåðåõîäÿò â ïðåîáð. Ãàëèëåÿ. Ò.å. ïðåîáð. Ãàëèëåÿ ÿâë. ÷àñòíûì ñëó÷àåì ïðåîáð. Ëîðåíöà ïðè ìàëûõ ñêîðîñòÿõ äâèæåíèÿ. Àíàëèçèðóÿ ñëîæèâøååñÿ ïîëîæ. À.Ýéíøòåéí ðàçðàáîòàë íîâóþ ìåõàíèêó áîëüøèõ ñêîðîñòåé, íàçûâàåìóþ ñåé÷àñ ðåëÿòèâèñòñêîé ìåõàíèêîé èëè ñïåöèàëüíîé Ò. îòíñèò-òè.  îñíîâå ýòîé Ò. ëåæàò 2 ïîñòóëàòà. Ñîãëàñíî ïåðâîìó ïîñòóëàòó ñêîðîñòü ðàñïðîñòðàíåíèÿ ñâåòà âî âñåõ èíåðö. ñèñò. êîîðä. îäèíàêîâà è =à ñêîð. ðàñïðîñòðàíåíèÿ ñâåòà â âàêóóìå — ñ. Ýòîò ïîñòóëàò óòâåðæäàåò ýêâèâàëåíòíîñòü èíåðö. ñèñòåì îòñ÷. îòíîñèò. ñêîð. ñâåòà. 2é ïîñòóëàò çàêë. â òîì, ÷òî âñå ôèçè÷åñêèå çàêîíû è ÿâë-ÿ ôîðìóëèðóþòñÿ è ïðîòåêàþò îäèíàêîâî âî âñåõ èíåðö. ñèñò. îòñ÷., ò.å. èíâàðèàíòíû îòíîñèò. ïðåîáð. Ëîðåíöà. Áàçèðóÿñü íà ýòèõ ïîñòóëàòàõ, Ýéíøòåéí ðàçðàáîòàë Ò. äâèæåíèÿ ñèñòåì ïðè ëþáûõ ñêîðîñòÿõ, âïëîòü äî ñêîðîñòåé ñâåòà.  ðàìêàõ Ò. îòíñèò-òè ïîëó÷åíû âûâîäû, êàçàëîñü áû ïðîòèâîðå÷àùèå çàêîíàì êëàñè÷. ìåõàíèêè. Îäíàêî, âñå âûâîäû ýòîé Ò. ïîäòâåðæäåíû ýêñïåðèìåíòàëüíî ñ âûñîêîé òî÷íîñòüþ. Ñîãëàñíî ïðèíöèïó ñîîòâåòñòâèÿ ñòàðàÿ Ò. (êëàññè÷åñêàÿ ìåõàíèêà èëè ìåõàíèêà äâèæåíèÿ òåë ïðè ìàëûõ ñêîðîñòÿõ) ÿâë. ÷àñòíûì ñëó÷àåì íîâîé. È íàîáîðîò, íîâàÿ Ò. îòíñèò-òè ïåðåõîäèò â ñòàðóþ êëàññè÷åñêóþ ìåõàíèêó ïðè ñêîðîñòÿõ äâèæåíèÿ v<

17. Ðåëÿòèâèñòñêàÿ ìåõàíèêà. Ñîêðàùåíèå äëèíû è âðåìåíè. Îáðàòèìñÿ ê ïðåîáðàçîâàíèÿì Ëîðåíöà (12.1). Èç íèõ ñëåä., ÷òî ìàêñèìàëüíàÿ ñêîðîñòü äâèæåíèÿ ìàò. ñèñòåì îãðàíè÷åíà ñêîð-òüþ ñâåòà â âàêóóìå ñ. If áû ñêîðîñòü äâèæåíèÿ òåëà ïðåâûñèëà ñêîðîñòü ñâåòà, òî, êàê ñëåä. èç ïðåîáð. Ëîðåíöà, êîîðäèíàòû è âðåìÿ ñòàíóò ìíèìûìè ò.å. ïîòåðÿþò ðåàëüíûé ôèç. ñìûñë. Òåïåðü ðàññìîòðèì íåêîòîðûå ñëåäñòâèÿ èç ïðåîáð. Ëîðåíöà.  êëàñè÷. ìåõàíèêå ðàññòîÿíèå ìåæäó äâóìÿ òî÷êàìè è âðåìÿ áûëè îäèíàêîâûì âî âñåõ èíåðö. ñèñò. îòñ÷..  ðåëÿòèâèñòñêîé ìåõàíèêå îíè îêàçàëèñü ðàçíûìè â ðàçëè÷í. èíåðö. ñèñò. îòñ÷., ò.å. ïåðåñòàëè áûòü èíâàðèàíòàìè. Íî èíâàðèàíòû îòíîñèò. ïðåîáð. Ëîðåíöà äîëæåí áûòü. 1èì èç íèõ ÿâë. ñêîðîñòü ñâåòà â âàêóóìå — ñ. Îíà äåéñòâèòåëüíî îäèíàêîâà âî âñåõ èíåðö. ñèñò. îòñ÷.. Äðóãèì èíâàðèàíòîì ýòèõ ïðåîáð. ÿâë. òàê íàçûâàåìûé èíòåðâàë ìåæäó ñîáûòèÿìè. Åãî êâàäðàò ðàâåí: ‘äåëüòà’S^2=c^2*’äåëüòà’t^2-‘äåëüòà’x^2+’äåëüòà’y^2+’äåëüòà’z^2 (12.2). Áëàãîäàðÿ èíâàðèàíòíîñòè èíòåðâàëà ïðîñòðàíñòâî è âðåìÿ îêàçûâàþòñÿ âçàèìîñâÿçàííûìè. Îíè îáðàçóþò åäèíîå ÷åòûðåõìåðíîå ïðîñòðàíñòâî-âðåìÿ. Âäîëü ÷åòâåðòîé îñè îòêëàäûâàåòñÿ ìíèìàÿ âåëè÷èíà ict. ×åòûðåõìåðíîå ïðîñòðàíñòâî-âðåìÿ áûëî âïðâûå ââåäåíî Ã.Ìèíêîâñêèì (1864-1909) è ñåé÷àñ íîñèò åãî èìÿ. Ïîïðîáóåì ïðåäñòàâèòü ñåáå òàêîå ïðîñòðàíñòâî. Ìû óìååì äåëàòü ïðîåêöèè òðåõìåðíîãî ïðîñò-âà íà äâóõìåðíîå. Íàïðèìåð, òàêèì îáðçîì ìû ðèñóåì íà äîñêå òðåõìåðíóþ ñèñòåìó êîîðä. íà ïëîñêîñòè — äâóõìåðíîì ïðîñò-âå. Ïðåäñòàâèì ñåáå â îáúåìíîì òðåõìåðíîì ïðîñò-âå ïðîåêöèþ ÷åòûðåõìåðíîãî êóáà. Ýòî áóäóò 2 êóáà, êàæäàÿ èç âåðøèí îäíîãî êóáà ñîåäèíåíà ñ ñîîòâåòñòâóþùåé âåðøèíîé 2ãî êóáà ëèíèåé ÷åòâåðòîãî èçìåðåíèÿ. Ðàññòîÿíèå ìåæäó äâóìÿ òî÷êàìè â ÷åòûðåõìåðíîì ïðîñò-âå è áóäåò èíòåðâàë â ñîîòâåòñòâèè ñ çàêîíàìè ãåîìåòðèè. Ïðîàíàëèçèðóåì òåïåðü íà îñíîâå ïðåîáð. Ëîðåíöà îäíîâðåìåííîñòü ñîáûòèé â ðàçíûõ ñèñò. îòñ÷..  êëàñè÷. ìåõàíèêå èñïîëüçîâàëñÿ ïðèíöèï äàëüíîäåéñòâèÿ, êîãäà âçàèìäåéñòâèå ìåæäó òåëàìè îñóùåñòâëÿëèñü ìãíîâåííî ÷åðåç ëþá. ðàññòîÿíèå.  ýòîì ñëó÷àå ìû ìîãëè áû ñòàâèòü îäíî è òîæå âðåìÿ â ðàçíûõ ñèñò. êîîðä.. Ïîïðîñòó ãîâîðÿ ñèíõðîíèçîâàòü âðåìÿ è çàäàâàòü åãî îäíèì è òåì æå. Ðàññìîòðèì ýêñïåðèìåíò ïî ñèíõðîíèçàöèè ÷àñîâ, áàçèðóÿñü íà ïîñòóëàòàõ Ò. îòíñèò-òè. Ïðåäñòàâèì ñåáå ñëåäóþùóþ ñèòóàöèþ (ñì. ðèñ.12.2). Ïåðâûé íàáëþäàòåëü 1 ñòîèò íà çåìëå è ìèìî íåãî äâèãàåòñÿ âàãîí, â ñåðåäèíå êîò. ñòîèò 2é íàáëþäàòåëü 2.  íà÷àëå è êîíöå âàãîíà ðàñïîëîæåíû ÷àñû (1) è (2) êîò. íóæíî ñèíõðîíèçîâàòü. Ýòî ïðîùå âñåãî ñäåëàòü ñëåäóþùèì îáðçîì. 2é íàáëþäàòåëü â âàãîíå ïîñûëàåò ñâåò â 2å ñòîðîíû è â ìîìåíò ïðèõîäà ñâåòà íà ÷àñû, îíè âêëþ÷àþòñÿ ñ íóëÿ è èäóò ñèíõðîííî. Ñ ò÷êè çðåíèÿ íàáëþäàòåëÿ â âàãîíå ÷àñû ïîêàçûâàþò îäèíàê. âðåìÿ. Ðàññìîòðèì, ÷òî ïîêàæóò ÷àñû ïåðâîìó íàáëþäàòåëþ, ñòîÿùåìó íà çåìëå. Ñêîðîñòü ðàñïðîñòðàíåíèÿ ñâåòà ïîñòîÿíà â ëþá. ñèñò-å îòñ÷.. Ïîêà ñâåò ðàñïðîñòðàíÿåòñÿ â êîíåö âàãîíà, ÷àñû 1 ïåðåìåñòÿòñÿ åìó íàâñòðå÷ó è áóäóò âêëþ÷åíû ðàíüøå. ×àñû 2 óéäóò çà âðåìÿ ðàñïðîñòðàíåíèÿ ñâåòà è áóäóò âêëþ÷åíû ïîçäíåå. Òêèì îáðçîì, ñ ò÷êè çðåíèÿ ïåðâîãî íàáëþäàòåëÿ ÷àñû áóäóò ïîêàçûâàòü ðàçíîå âðåìÿ , à ñ ò÷êè çðåíèÿ 2ãî íàáëþäàòåëÿ — îäèíàê.. Âðåìÿ áóäåò ðàçíîå äëÿ 2õ ðàçíûõ íàáëþäàòåëåé, íàõîäÿùèõñÿ â ðàçëè÷í. èíåðö. ñèñò. îòñ÷.. Ê ýòîìó æå ðåçóëüòàòó ìîæíî ïðèéòè è ÷èñòî ôîðìàëüíî, ïðè ïîìîùè ïðåîáð. Ëîðåíöà. Ïîêàæåì ýòî. Ïóñòü â íåïîäâèæíîé ñèñò-å îòñ÷. Ê 2 ñîáûòèÿ ïðîèñõîäÿò îäíîâðåìåíî, ò.å.t1=t2. Íàéäåì ðàçíîñòü ‘äåëüòà’t’=t2′-t1′ â ñèñò-å îòñ÷. Ê’, ïåðåìåùàþùåéñÿ îòíîñèò. Ê âäîëü îñè x ñî ñêîð-òüþ u. Äëÿ ýòîãî âîñïîëüçóåìñÿ ïðåîáðàçîâàíèåì Ëîðåíöà äëÿ âðåìåíè. ‘äåëüòà’t’=t2’-t1’=(t2 — u*x2/c^2 — t1 + u*x1/c^2)/’êîðåíü'(1-(u/c)^2)=((t2-t1) + (u/c^2)*(x1-x2))/’êîðåíü'(1-(u/c)^2)=u(x1-x2)/(c^2)*’êîðåíü'(1-(u/c)^2) ‘íå ðàâíî’ 0, ò.ê. x1’íå ðàâíî’x2. Íå âäàâàÿñü â äåòàëüíûé àíàëèç, óêàæåì, ÷òî èçìåíåíèå äëèòåëüíîñòè ïðîìåæóòêîâ âðåìåíè íå êàñàåòñÿ ïðèíöèïà ïðè÷èííîñòè: if èç 2õ ñîáûòèé, îäíî ÿâë. ñëåäñòâèåì äðóãîãî è ðàçäåëåíû ïðîìåæóòêîì âðåìåíè, òî â ëþá. èíåðö. ñèñò-å îòñ÷. ýòè ñîáûòèÿ òàêæå ðàçäåëåíû ïðîìåæóòêîì âðåìåíè, è ïîñëåäîâàòåëüíîñòü ñîáûòèé íå íàðóøàåòñÿ. Ò.å. ñëåäñòâèå âñåãäà èäåò ïîñëå ïðè÷èíû. Îáðàòèìñÿ åùå ðàç ê ïðèìåðó, ïðèâåäåííîìó â ïàðàãðàôå 12.1, â êîò. ðàññìàòðèâàëîñü âçàèìäåéñòâèå 2õ äâèæóùèõñÿ çàðÿäîâ, è îòâåòèì íà âîïð, ïî÷åìó æå âñå-òàêè ñèëû âçàèìäåéñò. îêàæóòñÿ äëÿ ðàçíûõ íàáëþäàòåëåé ðàçíûìè. Îòâåò íà íåãî çàêë. â òîì, ÷òî â äâèæóùåéñÿ ñèñò-å îòñ÷. âðåìÿ òå÷åò ìåäëåííåå, è óñêîðåíèå, à çí÷èò, è ñèëà âçàèìäåéñò. óìåíüøèòñÿ. Êðîìå èçìåíåíèÿ õîäà ÷àñîâ íàáëþäàåòñÿ èçìåíåíèå ðàçìåðîâ (óêîðî÷åíèå) áûñòðî äâèæóùèõñÿ îáúåêòîâ. Ýòîò ýôåêò òîæå ìîæåò áûòü âûâåäåí èç ïðåîáð. Ëîðåíöà. Ñâÿçü äëèíû îòðåçêà, íàïðàâëåííîãî âäîëü ñêîð. äâèæåíèÿ, â ñèñò-å Ê (íàáëþäàåìàÿ äëèíà l) è â ñèñò-å K’ (ñîáñòâåííàÿ äëèíà l0) çàäàåòñÿ ôîðìóëîé: l=l0*’êîðåíü'(1-(u/c)^2) (12.4). Ò.î ñîáñòâåííàÿ äëèíà âñåãäà ìàêñèìàëüíà. Îòìåòèì, ÷òî ñîêðàùàþòñÿ ëèøü ðàçìåðû òåëà âäîëü íàïðàâë-ÿ ñêîð. ñèñòåìû K’. Èçìåíåíèå ðàçìåðîâ — êàæóùèéñÿ, íåíàáëþäàåìûé ýôåêò.  ðåëÿòèâèñòñêîé ìåõàíèêå ïðåäñêàçàí åùå öåëûé ðÿä ïàðàäîêñàëüíûõ ñ ò÷êè çðåíèÿ êëàñè÷. ìåõàíèêè ÿâëåíèé.  íàñòîÿùåå âðåìÿ áîëüøèíñòâî èç íèõ íàáëþäàëèñü â ýêñïåðèìåíòàõ. Ïðè ýòîì íå íàáëþäàëîñü îòêëîíåíèé îò ïðåäñêàçàíèé ñïåöèàëüíîé Ò. îòíñèò-òè.